#50 March 2018 Update on My T1D Management

This is a monthly update on my glycemic management of type 1 diabetes (T1DM) using Humalog and Lantus insulin injections with resistance exercise and a ketogenic whole-food diet as described in my book, The Ketogenic Diet for Type 1 Diabetes also available on Amazon in print. My other book, Conquer Type 2 Diabetes with a Ketogenic Diet, is also available on Amazon in print.

Although glycemic management in T1DM will always be challenging, the low carbohydrate ketogenic whole-food diet definitely improves it and just as importantly reduces insulin requirements and can reduce the frequency of symptomatic hypoglycemia. Many of the diseases (cardiovascular disease, cancer, Alzheimer’s, and many more) associated with T2DM and “double diabetes” as part of T1DM are due to insulin resistance and hyperinsulinemia. The low carbohydrate ketogenic whole-food diet directly improves both insulin resistance and endogenous hyperinsulinemia in T2DM and exogenous insulin requirements in T1DM (i.e. reduced insulin doses).

March was the first full month of taking metformin at a dose of 2000 mg/day. I am tolerating it without any side effects. As you may know metformin is the first-line medication for T2DM, but can also be useful for those with T1DM. Metformin acts on the liver to reduce glucose production by suppressing both gluconeogenesis and glycogenolysis. I think this may be useful for those with T1DM on a low carbohydrate diet because the reduction in dietary carbohydrate reduces insulin requirements which in turn stimulates glucagon secretion by the alpha cells in the pancreas which in turn increases glucose production by the liver. This increase in glucose production occurs primarily from increased gluconeogenesis, but also some increase in glycogenolysis is suggested in some studies. In addition, metformin stimulates muscle uptake of glucose independent of insulin. Hopefully over time, I will be able to determine if taking metformin either reduces my blood glucose (BG), insulin requirements, or both. I am estimating that I will need to take it for 6 months to be able to make a before and after comparison. I should mention that a meta-analysis of metformin use in those with T1DM found the following:

“RESULTS: In total, eight randomized controlled trials were included. Metformin was associated with a reduction in daily insulin dosage, body weight, total cholesterol level, low-density lipoprotein level, and high-density lipoprotein level but an increase in risk of gastrointestinal AEs compared with placebo treatment in T1DM patients. No significant difference was found between the metformin group and the placebo group in HbA1c level, FPG level, or triglycerides level. No significant difference was found between the metformin group and the placebo group in the risk of severe hypoglycemia or diabetic ketoacidosis.” The reference is linked below. That said, there is a possibility that metformin could increase the incidence and severity of hypoglycemia while on a ketogenic diet, so caution should be exercised. A possible mechanism for this is the fact that gluconeogenesis plays a more important role in maintaining BG in those on a ketogenic diet than on a balanced macronutrient diet. If metformin reduces gluconeogenesis, then hypoglycemia could result if insulin doses are not appropriately reduced.

For the past several months I have detailed my treatment plan for my presumed left shoulder rotator cuff injury. Although it seems to be slow to recover, it continues to improve. On March 9th, I strained my left vastus lateralis muscle doing a snatch. That has set my training back. This injury could be just one of those things, or could be a sign of overtraining, not really sure which. I no longer have any of the other symptoms of overtraining since reducing the number of exercises to 2-3/day. In March, the post-exercise BG rise moderated considerably. This I believe is a combination of having the proper basal insulin dose and is related to the reduced intensity of my exercise because of the muscle injury sustained on March 9th. In March, I continued my post-exercise meal of 1/4 lb. ground beef with a small dose of insulin depending on the prior BG value. My daily protein intake is currently 1.6 grams/kg/day which may promote some additional muscle growth along with the stimulus of resistance training. According to research done by Stuart Phillips, PhD and others, as one ages a “resistance” to building muscle develops which can be overcome somewhat by resistance exercise and increasing dietary protein intake to least 0.4 grams/kg BW/meal and 1.6 grams/kg/day. This is the rationale for the post-exercise meal of 1/4 lb. 85% lean ground beef which contains 29.4 grams protein or 0.38 grams/kg BW in my case.

Glycemic Management Results for March 2018

My March glycemic results were somewhat improved compared to previous time periods although I did not reach my desired BG goal of >70% time spent with a BG value between 61 and 110 mg/dl. I had less hypoglycemia this month and none were symptomatic. My total daily insulin dose remained unusually constant in the low 30s IU/day during the month of March.

Below are my mean BG values, mean insulin doses, and BG frequency distribution for March 2018 compared to previous time periods. I have changed two columns to indicate the AUC mean BG and predicted HbA1c. AUC mean BG is the mean BG by calculating the area under the curve (AUC) of BG versus time. The predicted HbA1c uses the formula: AUC mean BG plus 88.55 divided 33.298. This formula is the least squares fit using my own personal mean BG versus measured HbA1c over many years. My particular HbA1c values are higher than many other individuals with the same mean BG. This is referred to as being a “high glycator.”

Post 50 Means Table

As discussed previously, exogenous insulin cannot mimic normal insulin secretion, so persons with T1DM should not expect to have truly normal BG values at all times. They just need to be low enough to prevent long-term complications and not so low as to cause unpleasant hypoglycemic symptoms or less common, yet more dangerous, consequences including brain damage, seizure, injury, coma, or death. I have set my target BG range at 61-110 mg/dl because values in this range are not likely to lead to harm or complications of T1DM. Your target BG range should be determined with your physician because one size does not fit all. Normal BG is 96 ± 12 mg/dl (mean ± standard deviation (SD)) and coefficient of variation is 13% which is the weighted mean from two studies of continuous glucose monitoring in healthy subjects. The standard deviation and coefficient of variation are measures of BG variability which I believe are important in T1DM. Clinical outcomes in T1DM (i.e. microvascular and macrovascular complications) have only been documented to correlate with measures of mean BG, particularly HbA1c. This does not mean that BG variability is not important, but it just has not been documented to correlate with outcomes and complications of T1DM. Achieving a normal standard deviation or coefficient of variation in T1DM would be difficult, if not impossible, with current exogenous insulin therapy (injected or pumped). Monitoring the standard deviation and/or coefficient of variation and finding ways to improve them to the best of one’s ability is desirable in my opinion. Following a low carbohydrate ketogenic diet is one such method of reducing BG variability, mean BG, insulin doses, and hypoglycemia. A ketogenic diet may also provide an alternate/additional brain fuel in the form of ketones to protect the brain when BG does go low. The alternative energy that ketones supply to the brain may prevent or blunt the sympathoadrenal response to hypoglycemia which in turn reduces or eliminates the symptoms of and harm from hypoglycemia. This hypothesis needs to be tested before it can be stated as fact. Having mild asymptomatic hypoglycemia adapts the brain to lower BG and reduces the symptoms of mild hypoglycemia and potentially the harm from hypoglycemia due to lack of activation of the sympathetic nervous system by reducing sympathoadrenal-induced fatal cardiac arrhythmia.

Below are my BG readings along with the Humalog (rapid-acting insulin) doses in March 2018. I adjust the breakfast (blue circles), post-workout lunch (black circles), and dinner (purple circles) meal-time doses based on the pre-meal BG reading and take extra correction Humalog doses (red circles) for high BG readings as needed. I continued my previous pattern of high BG readings after weightlifting although they were less frequent and to a lesser extent as mentioned above. This is primarily controlled by the basal insulin (Lantus) dose taken at dinnertime but that dose is determined by the fasting BG reading and thus cannot be adjusted to optimize BG at all times of day. In those with T1DM the basal insulin dose may be enough to compensate for the increase in BG with intense exercise, but may additionally require a rapid-acting insulin dose to lower a high post-exercise BG.

Post 50 BG vs Humalog doses graph.png

The table below shows the BG variability results for current and previous time periods. The percentiles (10th, 25th, 75th, 90th) on the right show the spread of the BG readings about the median. The interquartile range, the difference between the 75th and 25th percentiles, is a measure of BG variability. In the middle of the table are the %Time in three BG ranges: %Time BG < 61 mg/dl (hypo) and the mean BG during that time, then %Time BG 61-110 mg/dl (target) and the mean BG during that time, and %Time BG > 110 mg/dl (hyper) and the mean BG during that time. Both the %Time with hypoglycemia and hyperglycemia are probably overestimates because they do not account for the corrections with glucose tablets for hypoglycemia or rapid-acting insulin (Humalog) for hyperglycemia. Measuring my BG more frequently or using a CGM would result in a more accurate estimate.

Post 50 Variability Table

The daily insulin dose totals and BG readings for March 2018 are shown in the graphs below. You can see a fairly steady total daily insulin dose during the month with a few spikes to address hyperglycemia.

Post 50 BG vs total insulin doses graph.png

The daily insulin dose totals for 2018 are shown in the graph below. You can see a steady reduction in insulin doses since the peak at the beginning of January 2018. The measures I have taken to reduce this variation in insulin dose has included keeping meals and exercise constant and have added metformin to suppress liver glucose production. Specifically, I try to keep all meals constant in terms of portion size, macronutrient composition and timing of my meals. In addition, I try to keep exercise constant including frequency (daily), type (the type of weightlifting exercises, mainly compound movements), intensity (gradually increasing weight over time as tolerated), and volume (repetitions). That said, keeping exercise intensity constant from day to day is nearly impossible.

Post 50 Insulin Doses in 2018 graph

The graph below is a new illustration of the distribution of BG values in the ranges indicated at various times of day. This could be useful to point out problems (hypoglycemia and/or hyperglycemia) at different times of day.

Post 50 %BG values in different ranges graph

The graph below is also new and illustrates the percentage of time spent in three BG ranges for each day of the month of March. The numeric percentage is shown for the % of time BG was between 61 and 110 mg/dl (green bar).

Post 50 %Time BG in Range graph

In April, I will continue olympic weightlifting every day with 2-3 exercises per day. I will also continue metformin 2000 mg daily which I divide up as follows: 500 mg with breakfast, 500 mg with lunch, and 1000 mg at bedtime.

My Thoughts About Management of Type 1 Diabetes With A Ketogenic Diet

My goal of glycemic management in T1DM with a ketogenic diet is to keep BG as close to normal i.e. 96 ± 12 mg/dl (mean ± SD) as is safely possible (i.e. avoiding hypoglycemia) to avoid diabetic complications, a reduction in lifespan, and unpleasant symptoms of as well as injury and death from hypoglycemia. For me, a well-formulated whole-food nutrient-dense ketogenic diet, daily exercise, frequent BG measurements, and lower insulin-analog doses (Humalog/Lantus) have improved my glycemic control, hypoglycemic reactions, and quality of life. My basic diet philosophy is to avoid processed foods especially those containing refined carbohydrates, sugar, and vegetable (seed) oils while enjoying whole foods (with just one ingredient) as close to their original state as possible. I think just knowing the guidelines in this paragraph would be a good start for those wanting to improve their diet. To treat diabetes, the additional step is to eliminate all foods with significant amounts of carbohydrate to keep the net carbohydrate total < 50 grams/day. Some may do better with < 30 grams/day, while others who exercise a lot may do well with < 100 grams/day.

My current version of ketogenic diet is as follows:

What I Cook & Eat

  • Beef, grass-fed, including meat (85% lean), heart, liver, and kidney (liverwurst)
  • Fish, mainly wild Alaskan salmon
  • Lamb occasionally
  • Chicken & Turkey occasionally
  • Chicken Eggs
  • Non-starchy vegetables (about 5% carbohydrate content by weight) including Cabbage (Red, Green, Napa), Kale, Collard Greens, Home-made Sauerkraut from Red Cabbage, Bok-Choy, Broccoli, Cauliflower, and some others.
  • Fruit – Avocado, Olives, lemon juice on fish
  • Nuts & Seeds – Pepitas, Macadamia, Brazil, Pecan, Walnut, Pistachio, Cashew.
  • Note: I developed an intolerance to milk prior to my diagnosis of T1D. I did try heavy whipping cream after starting my KLCHF diet, but am also intolerant of it. I do tolerate butter, but wanted to decrease my fat intake, so eliminated all dairy including cheese and yogurt.

What I Drink

Water (filtered by reverse osmosis), Unsweetened Tea & Coffee

What I Don’t Eat

  • Grains – Wheat, Corn, Rice, Oats (there are many more) or anything made from them, which is too numerous to list here. Gluten is a protein present in a number of grains (all varieties of wheat including spelt, kamut, and triticale as well as barley and rye.) which can cause a number of medical problems for a significant portion of the population with gluten sensitivity or celiac disease. In my case, I avoid them due to their carbohydrate content.
  • Starchy and most root vegetables – potatoes, sweet potatoes, yams
  • Legumes – peas, beans, lentils, peanuts, soybeans
  • High sugar fruits – includes most fruits except berries, see above.
  • Sugar and the fifty other names used to disguise sugar.
  • Vegetable Oils – Canola, Corn, Soybean, Peanut, Sunflower, Safflower, Cottonseed, Grape seed, Margarine & Butter substitutes, Shortening.
  • All Processed Foods.
  • I avoid restaurants except when traveling, and then order fish or steak with plain steamed non-starchy vegetables (no gravy or sauces that typically contain sugar, cornstarch, or flour) or salad.
  • Refined, but healthy, fats – Although there is nothing bad about including butter, coconut & olive oil in a ketogenic diet, I have eliminated refined fats from my diet to improve my body composition.

What I Don’t Drink

  • Colas (both sweetened and artificially sweetened).
  • Fruit Juice except small amounts of lemon juice occasionally.
  • Alcohol (can cause hyperglycemia or hypoglycemia in persons with diabetes).
  • No artificial sweeteners: I don’t enjoy them.

My exercise regimen often results in post-exercise hyperglycemia which is a normal response to intense exercise. However due to having T1DM, my body is unable to correct this without taking exogenous rapid-acting insulin (Humalog). The exercise I choose negatively affects my glycemic control to some extent. I’m sure I could find an exercise that has less impact on glycemia, but I enjoy weightlifting and feel it has health-span and life-span extending benefits which may compensate for the temporary increase in BG during/after exercise. Hopefully my BG values and variability as well as the relatively lower insulin doses that result from my ketogenic diet, exercise, and hopefully metformin (yet to be determined) are close enough to optimal to avoid any reduction in lifespan, diabetic complications, and harm from hypoglycemia, but only time will tell.

References

Efficacy and safety of metformin for patients with type 1 diabetes mellitus: a meta-analysis – here

A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults – here

Continuous Glucose Profiles in Healthy Subjects under Everyday Life Conditions and after Different Meals – here

Variation of Interstitial Glucose Measurements Assessed by Continuous Glucose Monitors in Healthy, Nondiabetic Individuals – here

Severe Hypoglycemia–Induced Lethal Cardiac Arrhythmias Are Mediated by Sympathoadrenal Activation – here

 

Advertisements

#49 February 2018 Update on My T1D Management

This is a monthly update on my glycemic management of type 1 diabetes (T1DM) using Humalog and Lantus insulin injections with resistance exercise and a ketogenic whole-food diet as described in my book, The Ketogenic Diet for Type 1 Diabetes also available on Amazon in print. My other book, Conquer Type 2 Diabetes with a Ketogenic Diet, is also available on Amazon in print.

Although glycemic management in T1DM will always be challenging, the low carbohydrate ketogenic whole-food diet definitely improves it and just as importantly reduces insulin requirements and can reduce the frequency of symptomatic hypoglycemia. Many of the diseases (cardiovascular disease, cancer, Alzheimer’s, and many more) associated with T2DM and “double diabetes” as part of T1DM are due to insulin resistance and hyperinsulinemia. The low carbohydrate ketogenic whole-food diet directly improves both insulin resistance and endogenous hyperinsulinemia in T2DM and exogenous insulin requirements in T1DM (i.e. reduced insulin doses).

In February, I was able to increase the dose of metformin to 500 mg four times daily. I am tolerating it without any side effects. As you may know metformin is the first-line medication for T2DM, but can also be useful for those with T1DM. Metformin acts on the liver to reduce glucose production by suppressing both glycogenolysis and gluconeogenesis. This is particularly useful for those with T1DM on a low carbohydrate diet, because the reduction in dietary carbohydrate reduces the insulin requirements and the reduction in insulin elevates glucagon levels reaching the liver from the alpha cells in the pancreas. It is glucagon that stimulates both glycogenolysis and gluconeogenesis. In addition, metformin stimulates muscle uptake of glucose independent of insulin. Hopefully over time, I will be able to determine if taking metformin either reduces my blood glucose (BG), insulin requirements, or both.

For the past several months I have detailed my treatment plan for my presumed left shoulder rotator cuff injury. Although it seems to be slow to recover, it has improved significantly. I continue doing snatch overhead, front, and back squats, snatch, clean & jerk, and deadlifts. In February, I continued once daily weightlifting workouts with two compound exercises per day and added a third exercise specifically to strengthen my shoulders. I have previously discussed the change in BG with exercise. I still experience a significant, but variable, rise in BG during weightlifting. This rise in BG requires a correction dose of rapid-acting insulin (Humalog). This past month I added a small post-workout (lunch) meal of meat (1/4 lb.) after my workouts to increase my protein intake to 1.6 grams/kg/day which may promote some additional muscle growth. According to research done by Stuart Phillips, PhD and others, as one ages a “resistance” to building muscle develops which can be overcome somewhat by resistance exercise and increasing dietary protein intake to least 0.4 grams/kg/meal and 1.6 grams/kg/day.

Glycemic Management Results for February 2018

My February glycemic results were similar to previous time periods with more spikes in BG (hyperglycemia) and hypoglycemia than I would have liked. I had more hypoglycemia this month that required steady reductions in insulin doses. My total daily insulin dose decreased from 41 to 31.5 IU/day during the month of February. I had one episode of symptomatic hypoglycemia on Feb. 16, 2018. The only symptom was sweating for which I took 8 grams of glucose (2 glucose tablets). My post-treatment BG was 83 mg/dl and it was 137 mg/dl the following morning.

Below are my mean BG values, mean insulin doses, and BG frequency distribution for February 2018 compared to previous time periods. I have changed two columns to indicate the AUC mean BG and predicted HbA1c. AUC mean BG is the mean BG by calculating the area under the curve (AUC) of BG versus time. The predicted HbA1c uses the formula: AUC mean BG plus 88.55 divided 33.298. This formula is the least squares fit using my own personal mean BG versus measured HbA1c over many years. My particular HbA1c values are higher than many other individuals with the same mean BG. This is referred to as being a “high glycator.”

Post 49 Means Table

As discussed previously, exogenous insulin cannot mimic normal insulin secretion, so persons with T1DM should not expect to have truly normal BG values at all times. They just need to be low enough to prevent long-term complications and not so low as to cause unpleasant hypoglycemic symptoms or less common, yet more dangerous, consequences including brain damage, seizure, injury, coma, or death. I have set my target BG range at 61-110 mg/dl because values in this range are not likely to lead to harm or complications of T1DM. Your target BG range should be determined with your physician because one size does not fit all. Normal BG is 96 ± 12 mg/dl (mean ± standard deviation (SD)) and coefficient of variation is 13% which is the weighted mean from two studies of continuous glucose monitoring in healthy subjects. The standard deviation and coefficient of variation are measures of BG variability which I believe are important in T1DM. Clinical outcomes in T1DM (i.e. microvascular and macrovascular complications) have only been documented to correlate with measures of mean BG, particularly HbA1c. This does not mean that BG variability is not important, but it just has not been documented to correlate with outcomes and complications of T1DM. Achieving a normal standard deviation or coefficient of variation in T1DM would be difficult, if not impossible, with current exogenous insulin therapy (injected or pumped). Monitoring the standard deviation and/or coefficient of variation and finding ways to improve them to the best of one’s ability is desirable in my opinion. Following a low carbohydrate ketogenic diet is one such method of reducing BG variability, mean BG, insulin doses, and hypoglycemia. A ketogenic diet may also provide an alternate/additional brain fuel in the form of ketones to protect the brain when BG does go low. The alternative energy that ketones supply to the brain may prevent or blunt the sympathoadrenal response to hypoglycemia which in turn reduces or eliminates the symptoms of and harm from hypoglycemia. This hypothesis needs to be tested before it can be stated as fact. Having mild asymptomatic hypoglycemia adapts the brain to lower BG and reduces the symptoms of mild hypoglycemia and potentially the harm from hypoglycemia due to lack of activation of the sympathetic nervous system by reducing sympathoadrenal-induced fatal cardiac arrhythmia.

Below are my BG readings along with the Humalog (rapid-acting insulin) doses in February 2018. I adjust the breakfast (blue circles), post-workout lunch (black circles), and dinner (purple circles) meal-time doses based on the pre-meal BG reading and take extra correction Humalog doses (red circles) for high BG readings as needed. I continued my previous pattern of high BG readings after weightlifting (at 2 PM) although was less frequent. This is primarily controlled by the basal insulin (Lantus) dose taken at dinnertime but that dose is determined by the fasting BG reading and thus cannot be adjusted to optimize BG at all times of day. In those with T1DM the basal insulin dose may be enough to compensate for the increase in BG with intense exercise, but may also require a rapid-acting insulin dose to lower a high post-exercise BG.

Post 49 BG and Humalog Doses Graph

The table below shows the BG variability results for current and previous time periods. The percentiles (10th, 25th, 75th, 90th) on the right show the spread of the BG readings about the median. The interquartile range, the difference between the 75th and 25th percentiles, is a measure of BG variability. In the middle of the table are the %Time in three BG ranges: %Time BG < 61 mg/dl (hypo) and the mean BG during that time, then %Time BG 61-110 mg/dl (target) and the mean BG during that time, and %Time BG > 110 mg/dl (hyper) and the mean BG during that time. Both the %Time with hypoglycemia and hyperglycemia are probably overestimates because they do not account for the corrections with glucose tablets (for hypoglycemia) or rapid-acting insulin (Humalog) (for hyperglycemia). Measuring my BG more frequently or using a CGM would likely result in a more accurate estimate.

Post 49 Variability Table

The daily insulin dose totals and BG readings for February 2018 are shown in the graphs below. You can see a steady decrease in total daily insulin dose during the month to address hypoglycemia.

Post 49 BG and Total Insulin Doses Graph

The daily insulin dose totals for 2018 are shown in the graph below. You can see a steady reduction in insulin doses since the peak at the beginning of January 2018. The measures I have taken to reduce this variation in insulin dose has included keeping meals and exercise constant and have added metformin to suppress liver glucose production. Specifically, I try to keep all meals constant in terms of portion size, macronutrient composition and timing of my meals. In addition, I try to keep exercise constant including frequency (daily), type (the type of weightlifting exercises, mainly compound movements), intensity (gradually increasing weight over time as tolerated), and volume (repetitions). I have tolerated a metformin dose of 500 mg four times a day since Feb. 15, 2018 which I think is high enough to understand if it will have any beneficial effects.

Post 49 Total Daily Insulin Doses in 2018 Graph

The graph below is a new illustration of the distribution of BG values in the ranges indicated at various times of day. This could be useful to point out problems (hypoglycemia and/or hyperglycemia) at different times of day.

Post 49 Frequency of BG in Ranges Graph

The graph below is also new and illustrates the percentage of time spent in three BG ranges for each day of the month of February. The numeric percentage is shown for the % of time BG was between 61 and 110 mg/dl.

Post 49 Daily Percent Time in BG Ranges Graph

In March, I will continue olympic weightlifting every day with two compound exercises and one isolated shoulder exercise per day. I will also continue metformin 500 mg four times daily.

My Thoughts About Management of Type 1 Diabetes With A Ketogenic Diet

My goal of glycemic management in T1DM with a ketogenic diet is to keep BG as close to normal i.e. 96 ± 12 mg/dl (mean ± SD) as is safely possible (i.e. avoiding hypoglycemia) to avoid diabetic complications, a reduction in lifespan, and unpleasant symptoms of as well as injury and death from hypoglycemia. For me, a well-formulated whole-food nutrient-dense ketogenic diet, daily exercise, frequent BG measurements, and lower insulin-analog doses (Humalog/Lantus) have improved my glycemic control, hypoglycemic reactions, and quality of life. My basic diet philosophy is to avoid processed foods especially those containing refined carbohydrates, sugar, and vegetable (seed) oils while enjoying whole foods (with just one ingredient) as close to their original state as possible. I think just knowing the guidelines in this paragraph would be a good start for those wanting to improve their diet. To treat diabetes, the additional step is to eliminate all foods with significant amounts of carbohydrate to keep the net carbohydrate total < 50 grams/day. Some may do better with < 30 grams/day, while others who exercise a lot may do well with < 100 grams/day.

My current version of ketogenic diet is as follows:

What I Cook & Eat

  • Beef, grass-fed, including meat (85% lean), heart, liver, and kidney (liverwurst)
  • Fish, mainly wild Alaskan salmon
  • Canadian bacon (uncured pork loin)
  • Lamb occasionally
  • Chicken & Turkey occasionally
  • Chicken Eggs
  • Non-starchy vegetables (about 5% carbohydrate content by weight) including Cabbage (Red, Green, Napa), Kale, Collard Greens, Leeks, Onions, Home-made Sauerkraut from Red Cabbage, Bok-Choy, Broccoli, Cauliflower, Yellow Squash, Zucchini, Cucumber, Lettuce (Iceberg & Romaine), and some others.
  • Fruit – Avocado, Tomatoes, Olives, lemon juice on fish and salads
  • Root Vegetable: Raw Carrots
  • Nuts & Seeds – Pepitas, Macadamia, Brazil, Pecan, Walnut, Pistachio, Cashew.
  • MCT oil – a few tablespoons on salads or cooked vegetables till current supply is finished.
  • Note: I developed an intolerance to milk prior to my diagnosis of T1D. I did try heavy whipping cream after starting my KLCHF diet, but am also intolerant of it. I do tolerate butter, but wanted to decrease my fat intake, so eliminated all dairy including cheese and yogurt.

What I Drink

Water (filtered by reverse osmosis), Unsweetened Tea & Coffee

What I Don’t Eat

  • Grains – Wheat, Corn, Rice, Oats (there are many more) or anything made from them, which is too numerous to list here. Gluten is a protein present in a number of grains (all varieties of wheat including spelt, kamut, and triticale as well as barley and rye.) which can cause a number of medical problems for a significant portion of the population with gluten sensitivity or celiac disease. In my case, I avoid them due to their carbohydrate content.
  • Starchy and most root vegetables – potatoes, sweet potatoes, yams
  • Legumes – peas, beans, lentils, peanuts, soybeans
  • High sugar fruits – includes most fruits except berries, see above.
  • Sugar and the fifty other names used to disguise sugar.
  • Vegetable Oils – Canola, Corn, Soybean, Peanut, Sunflower, Safflower, Cottonseed, Grape seed, Margarine & Butter substitutes, Shortening.
  • All Processed Foods.
  • I avoid restaurants except when traveling, and then order fish or steak with plain steamed non-starchy vegetables (no gravy or sauces that typically contain sugar, cornstarch, or flour) or salad.
  • Refined, but healthy, fats – Although there is nothing bad about including butter, coconut & olive oil in a ketogenic diet, I have eliminated refined fats (except a small amount of MCT oil until my current supply runs out) from my diet to improve my body composition.

What I Don’t Drink

  • Colas (both sweetened and artificially sweetened).
  • Fruit Juice except small amounts of lemon juice occasionally.
  • Alcohol (can cause hyperglycemia or hypoglycemia in persons with diabetes).
  • No artificial sweeteners, don’t want or like them.

My exercise regimen often results in post-exercise hyperglycemia which is a normal response to intense exercise. However due to having T1DM, my body is unable to correct this without taking exogenous rapid-acting insulin (Humalog) which negatively affects my glycemic control. I’m sure I could find an exercise that has less impact on glycemia, but I enjoy weightlifting and feel it has health-span and life-span extending benefits which may compensate for the temporary increase in BG during/after exercise. Hopefully my BG values and variability as well as the relatively lower insulin doses that result from my ketogenic diet, exercise, and hopefully metformin (yet to be determined) are close enough to optimal to avoid any reduction in lifespan, diabetic complications, and harm from hypoglycemia, but only time will tell.

References

Efficacy and safety of metformin for patients with type 1 diabetes mellitus: a meta-analysis – here

A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults – here

Continuous Glucose Profiles in Healthy Subjects under Everyday Life Conditions and after Different Meals – here

Variation of Interstitial Glucose Measurements Assessed by Continuous Glucose Monitors in Healthy, Nondiabetic Individuals – here

Severe Hypoglycemia–Induced Lethal Cardiac Arrhythmias Are Mediated by Sympathoadrenal Activation – here

 

#48 January 2018 Update on My T1D Management

This is a monthly update on my glycemic management of type 1 diabetes (T1DM) using Humalog and Lantus insulin injections with resistance exercise and a ketogenic whole-food diet as described in my book, The Ketogenic Diet for Type 1 Diabetes also available on Amazon in print. My other book, Conquer Type 2 Diabetes with a Ketogenic Diet, is also available on Amazon in print.

Although glycemic management in T1DM will always be challenging, the low carbohydrate ketogenic whole-food diet definitely improves it and just as importantly reduces insulin requirements and can reduce the frequency of symptomatic hypoglycemia. Many of the diseases (cardiovascular disease, cancer, Alzheimer’s, and many more) associated with T2DM and “double diabetes” as part of T1DM are due to insulin resistance and hyperinsulinemia. The low carbohydrate ketogenic whole-food diet directly improves both insulin resistance and endogenous hyperinsulinemia in T2DM and exogenous insulin requirements in T1DM (i.e. reduced insulin doses).

In January, I was able to increase the dose of metformin to 500 mg three times daily. I am tolerating it without any side effects. As you may know metformin is the first-line medication for T2DM, but can also be useful for those with T1DM. Metformin acts on the liver to reduce glucose production by suppressing both glycogenolysis and gluconeogenesis. This is particularly useful for those with T1DM on a low carbohydrate diet, because the reduction in dietary carbohydrate reduces the insulin requirements and the reduction in insulin elevates glucagon levels reaching the liver from the alpha cells in the pancreas. It is glucagon that stimulates both glycogenolysis and gluconeogenesis. In addition, metformin stimulates muscle uptake of glucose independent of insulin. Hopefully over time, I will be able to determine if taking metformin either reduces my blood glucose (BG), insulin requirements, or both.

For the past several months I have detailed my treatment plan for my presumed left shoulder rotator cuff injury. Although it seems to be slow to recover, it has improved significantly. I continue doing snatch overhead, front, and back squats, snatch, clean & jerk, and deadlifts. In January, I continued once daily weightlifting workouts with only two exercises per day. I have previously discussed the change in BG with exercise. I still experience a significant, but variable, rise in BG during weightlifting. This rise in BG requires a correction dose of rapid-acting insulin (Humalog).

This past month I added a small post-workout (lunch) meal of meat after my workouts to increase my protein intake to 1.6 grams/kg/day which may promote some additional muscle growth. According to research done by Stuart Phillips, PhD and others, as one ages a “resistance” to building muscle develops which can be overcome somewhat by resistance exercise and increasing dietary protein intake to least 0.4 grams/kg/meal and 1.6 grams/kg/day.

Glycemic Management Results for January 2018

My January glycemic results were similar to previous time periods with more spikes in BG (hyperglycemia) and hypoglycemia than I would have liked that resulted in an elevation of all my measures of BG variability. Fortunately, I did not have any symptoms of hypoglycemia in January. I spent only 59% of the time with a BG between 61 and 110 mg/dl (my goal is >70%). My insulin doses had to be decreased steadily throughout the month especially the rapid-acting insulin (Humalog) dose to address the hypoglycemia. I had to decrease the total daily insulin dose from a peak of 70.5 to 38 IU/day by the end of the month. This oscillating pattern of insulin doses with a period of about 8 weeks continues for reasons that are not quite clear. I am beginning to think that I am creating this pattern by adjusting my doses too rapidly due to my desire to optimize by BG values. In other words, the very nature of exogenous insulin therapy does not accommodate rapid optimal BG regulation.

Below are my mean BG values, mean insulin doses, and BG frequency distribution for January 2018 compared to previous time periods. I have changed two columns to indicate the AUC mean BG and predicted HbA1c. AUC mean BG is the mean BG by calculating the area under the curve (AUC) of BG versus time. The predicted HbA1c uses the formula: AUC mean BG plus 88.55 divided 33.298. This formula is the least squares fit using my own personal mean BG versus measured HbA1c over many years. My particular HbA1c values are higher than many other individuals with the same mean BG. This is referred to as being a “high glycator.”

Post 48 Means Table

As discussed previously, exogenous insulin cannot mimic normal insulin secretion, so persons with T1DM should not expect to have truly normal BG values at all times. They just need to be low enough to prevent long-term complications and not so low as to cause unpleasant hypoglycemic symptoms or less common, yet more dangerous, consequences including brain damage, seizure, injury, coma, or death. I have set my target BG range at 61-110 mg/dl because values in this range are not likely to lead to harm or complications of T1DM. Your target BG range should be determined with your physician because one size does not fit all. Normal BG is 96 ± 12 mg/dl (mean ± standard deviation (SD)) and coefficient of variation is 13% which is the weighted mean from two studies of continuous glucose monitoring in healthy subjects. The standard deviation and coefficient of variation are measures of BG variability which I believe are important in T1DM. Clinical outcomes in T1DM (i.e. microvascular and macrovascular complications) have only been documented to correlate with measures of mean BG, particularly HbA1c. This does not mean that BG variability is not important, but it just has not been documented to correlate with outcomes and complications of T1DM. Achieving a normal standard deviation or coefficient of variation in T1DM would be difficult, if not impossible, with current exogenous insulin therapy (injected or pumped). Monitoring the standard deviation and/or coefficient of variation and finding ways to improve them to the best of one’s ability is desirable in my opinion. Following a low carbohydrate ketogenic diet is one such method of reducing BG variability, mean BG, insulin doses, and hypoglycemia. A ketogenic diet may also provide an alternate/additional brain fuel in the form of ketones to protect the brain when BG does go low. The alternative energy that ketones supply to the brain may prevent or blunt the sympathoadrenal response to hypoglycemia which in turn reduces or eliminates the symptoms of and harm from hypoglycemia. This hypothesis needs to be tested before it can be stated as fact. Having mild asymptomatic hypoglycemia adapts the brain to lower BG and reduces the symptoms of mild hypoglycemia and potentially the harm from hypoglycemia due to lack of activation of the sympathetic nervous system by reducing sympathoadrenal-induced fatal cardiac arrhythmia.

Below are my BG readings along with the Humalog (rapid-acting insulin) doses in January 2018. I adjust the breakfast (blue circles), post-workout lunch (black circles), and dinner (purple circles) meal-time doses based on the pre-meal BG reading and take extra correction Humalog doses (red circles) for high BG readings as needed. I continued my previous pattern of high BG readings after weightlifting. This is primarily controlled by the basal insulin (Lantus) dose taken at dinnertime but that dose is determined by the fasting BG reading and thus cannot be adjusted to optimize BG at all times of day. In those with T1DM the basal insulin dose may be enough to compensate for the increase in BG with intense exercise, but may also require a rapid-acting insulin dose to lower a high post-exercise BG.

Post 48 Humalog Doses vs BG graph

The table below shows the BG variability results for current and previous time periods. The percentiles (10th, 25th, 75th, 90th) on the right show the spread of the BG readings about the median. The interquartile range, the difference between the 75th and 25th percentiles, is a measure of BG variability. In the middle of the table are the %Time in three BG ranges: %Time BG < 61 mg/dl (hypo) and the mean BG during that time, then %Time BG 61-110 mg/dl (target) and the mean BG during that time, and %Time BG > 110 mg/dl (hyper) and the mean BG during that time. Both the %Time with hypoglycemia and hyperglycemia are probably overestimates because they do not account for the corrections with glucose tablets (for hypoglycemia) or rapid-acting insulin (Humalog) (for hyperglycemia). Measuring my BG more frequently or using a CGM would result in a more accurate estimate.

Post 48 Variability Table

The daily insulin dose totals and BG readings for January are shown in the graphs below. You can see a steady decrease in total daily insulin dose during the month to address hypoglycemia.

Post 48 Insulin Dose Totals and BG graph

 

The graph below is a new illustration of the distribution of BG values in the ranges indicated at various times of day. This could be useful to point out problems (hypoglycemia and/or hyperglycemia) at different times of day.

Post 48 BG Distribution During Day Graph

The graph below is also new and illustrates the percentage of time spent in three BG ranges for each day of the month of January. The numeric percentage is shown for the % of time BG was between 61 and 110 mg/dl.

Post 48 Daily % Time in Different Ranges

In February, I will continue olympic weightlifting every day with two exercises per day. I will also continue metformin 500 mg three times daily.

My Thoughts About Management of Type 1 Diabetes With A Ketogenic Diet

My goal of glycemic management in T1DM with a ketogenic diet is to keep BG as close to normal i.e. 96 ± 12 mg/dl (mean ± SD) as is safely possible (i.e. avoiding hypoglycemia) to avoid diabetic complications, a reduction in lifespan, and unpleasant symptoms of as well as injury and death from hypoglycemia. For me, a well-formulated whole-food nutrient-dense ketogenic diet, daily exercise, frequent BG measurements, and lower insulin-analog doses (Humalog/Lantus) have improved my glycemic control, hypoglycemic reactions, and quality of life. My basic diet philosophy is to avoid processed foods especially those containing refined carbohydrates, sugar, and vegetable (seed) oils while enjoying whole foods (with just one ingredient) as close to their original state as possible. I think just knowing the guidelines in this paragraph would be a good start for those wanting to improve their diet. To treat diabetes, the additional step is to eliminate all foods with significant amounts of carbohydrate to keep the net carbohydrate total < 50 grams/day. Some may do better with < 30 grams/day, while others who exercise a lot may do well with < 100 grams/day.

My current version of ketogenic diet is as follows:

What I Cook & Eat

  • Beef, grass-fed, including meat (85% lean), heart, liver, and kidney (liverwurst)
  • Fish, mainly wild Alaskan salmon
  • Canadian bacon (uncured pork loin)
  • Lamb occasionally
  • Chicken & Turkey occasionally
  • Chicken Eggs
  • Non-starchy vegetables (about 5% carbohydrate content by weight) including Cabbage (Red, Green, Napa), Kale, Collard Greens, Leeks, Onions, Home-made Sauerkraut from Red Cabbage, Bok-Choy, Broccoli, Cauliflower, Yellow Squash, Zucchini, Cucumber, Lettuce (Iceberg & Romaine), and some others.
  • Fruit – Avocado, Tomatoes, Olives, lemon juice on fish and salads
  • Root Vegetable: Raw Carrots
  • Nuts & Seeds – Pepitas, Macadamia, Brazil, Pecan, Walnut, Pistachio, Cashew.
  • MCT oil – a few tablespoons on salads or cooked vegetables till current supply is finished.
  • Note: I developed an intolerance to milk prior to my diagnosis of T1D. I did try heavy whipping cream after starting my KLCHF diet, but am also intolerant of it. I do tolerate butter, but wanted to decrease my fat intake, so eliminated all dairy including cheese and yogurt.

What I Drink

Water (filtered by reverse osmosis), Unsweetened Tea & Coffee

What I Don’t Eat

  • Grains – Wheat, Corn, Rice, Oats (there are many more) or anything made from them, which is too numerous to list here. Gluten is a protein present in a number of grains (all varieties of wheat including spelt, kamut, and triticale as well as barley and rye.) which can cause a number of medical problems for a significant portion of the population with gluten sensitivity or celiac disease. In my case, I avoid them due to their carbohydrate content.
  • Starchy and most root vegetables – potatoes, sweet potatoes, yams
  • Legumes – peas, beans, lentils, peanuts, soybeans
  • High sugar fruits – includes most fruits except berries, see above.
  • Sugar and the fifty other names used to disguise sugar.
  • Vegetable Oils – Canola, Corn, Soybean, Peanut, Sunflower, Safflower, Cottonseed, Grape seed, Margarine & Butter substitutes, Shortening.
  • All Processed Foods.
  • I avoid restaurants except when traveling, and then order fish or steak with plain steamed non-starchy vegetables (no gravy or sauces that typically contain sugar, cornstarch, or flour) or salad.
  • Refined, but healthy, fats – Although there is nothing bad about including butter, coconut & olive oil in a ketogenic diet, I have eliminated refined fats (except a small amount of MCT oil until my current supply runs out) from my diet to improve my body composition.

What I Don’t Drink

  • Colas (both sweetened and artificially sweetened).
  • Fruit Juice except small amounts of lemon juice.
  • Alcohol (can cause hyperglycemia or hypoglycemia in persons with diabetes).
  • No artificial sweeteners, don’t want or like them.

My exercise regimen negatively affects my glycemic control, but I enjoy exercising and feel it has health and lifespan-extending benefits which may compensate for the temporary increase in BG during/after exercise. Hopefully my BG values and variability as well as the relatively lower insulin doses that result from my ketogenic diet, exercise, and hopefully metformin (yet to be determined) are close enough to optimal to avoid any reduction in lifespan, diabetic complications, and harm from hypoglycemia, but only time will tell.

References

Efficacy and safety of metformin for patients with type 1 diabetes mellitus: a meta-analysis – here

A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults – here

Continuous Glucose Profiles in Healthy Subjects under Everyday Life Conditions and after Different Meals – here

Variation of Interstitial Glucose Measurements Assessed by Continuous Glucose Monitors in Healthy, Nondiabetic Individuals – here

Severe Hypoglycemia–Induced Lethal Cardiac Arrhythmias Are Mediated by Sympathoadrenal Activation – here

 

#47 December 2017 Update on My T1D Management

This is a monthly update on my glycemic management of type 1 diabetes (T1DM) using Humalog and Lantus insulin injections with resistance exercise and a ketogenic whole-food diet as described in my book, The Ketogenic Diet for Type 1 Diabetes also available on Amazon in print. My other book, Conquer Type 2 Diabetes with a Ketogenic Diet, is also available on Amazon in print.

Although glycemic management in T1DM will always be challenging, the low carbohydrate ketogenic whole-food diet definitely improves it and just as importantly reduces insulin requirements and frequency of symptomatic hypoglycemia. Many of the diseases (cardiovascular disease, cancer, Alzheimer’s, and many more) associated with T2DM and “double diabetes” as part of T1DM are due to insulin resistance and hyperinsulinemia. The low carbohydrate ketogenic whole-food diet directly improves both insulin resistance and endogenous hyperinsulinemia in T2DM and exogenous insulin requirements in T1DM (i.e. reduced insulin doses).

Last month I detailed my treatment plan for my presumed left rotator cuff injury. Although it seems to be slow to recover, it has improved significantly throughout the months of October, November, and December. I started back doing snatch overhead squats on October 27th and snatch and clean and jerks on November 26th, but stopped doing front squats, snatch, and clean and jerks on December 20th. So far no shoulder pain during exercise, but some soreness with certain arm movements in daily life. I interpret this as much improvement, but not as yet complete recovery. In December, I continued once daily weightlifting workouts but had to decrease from three exercises per day to two per day due to overtraining (again). I have previously discussed the change in blood glucose (BG) with exercise. I still experience a significant rise in BG during weightlifting which I felt was due to stress hormone release from intense exercise (see the black circles i.e. 2 pm BG in the graphs below). However, I am thinking that in addition to that the BG response to exercise is also related to the adequacy or inadequacy of the basal insulin dose. What I have noticed is that when the fasting BG is normal (BG 61-110 mg/dl), the BG rises during weightlifting. But when the fasting BG is low (BG < 61 mg/dl), the BG does not rise during weightlifting and when the fasting BG is high (BG > 110 mg/dl), the BG rises even more dramatically during weightlifting. Of course, there is a lot of variability and these are general observations, not rules or predictable responses. For me, there does not seem to be one basal insulin dose that will result in both a normal fasting BG and a normal post-exercise BG. Several years ago I tried splitting up the basal insulin dose to a morning and dinner-time dose to address this issue with no improvement. For safety reasons, I think it is best to adjust the basal insulin dose (Lantus) to achieve a normal fasting BG and accept and treat an elevated post-exercise BG with a correction dose of rapid-acting insulin (Humalog). I have taken a small correction dose of rapid-acting insulin (Humalog) (about 1-2 IU) to correct a high post-breakfast BG prior to exercise with success most of the time. In December I noticed my post-exercise BG was increasing more dramatically and I thought since I am regularly having to take a dose of rapid-acting insulin and would like to increase my muscle mass further, I added a post-exercise meal consisting of 1/2 lb. ground beef and 18 olives and a larger rapid-acting insulin dose which I started on December 5th.

Glycemic Management Results for December 2017 

My December glycemic results were similar to previous time periods with more hyperglycemia than I would have liked. I did have much less hypoglycemia than usual and no symptoms of hypoglycemia. However, I spent only 58% of time with a BG between 61 and 110 mg/dl (my goal is >70%). My insulin doses had to be increased steadily throughout the month to levels I haven’t seen since before starting my ketogenic diet in 2012. Perhaps that was in part related to adding an additional meal per day, but also more of that oscillatory pattern that has been going on for years now. I had to increase the total daily insulin dose from 33 to 65.5 units/day.

Below are my mean BG values, mean insulin doses, and BG frequency distribution for December 2017 compared to previous time periods. I have changed two columns to indicate the AUC mean BG and predicted HbA1c. AUC mean BG is the mean BG by calculating the area under the curve (AUC) of BG versus time. The predicted HbA1c uses the formula: AUC mean BG plus 88.55 divided 33.298. This formula is the least squares fit using my own personal mean BG versus measured HbA1c over many years. My particular HbA1c values are higher than many other individuals with the same mean BG. This is referred to as being a “high glycator.”

Post 47 Means Table

As discussed previously, exogenous insulin cannot mimic normal insulin secretion, so persons with T1DM should not expect to have truly normal BG values at all times. They just need to be low enough to prevent long-term complications and not so low as to cause unpleasant hypoglycemic symptoms or less common but dangerous consequences including brain damage, seizure, injury, coma, or death. I have set my target BG range at 61-110 mg/dl because values in this range are not likely to lead to harm or complications of T1DM. Your target BG range should be determined with your physician because one size does not fit all. Normal BG is 96 ± 12 mg/dl (mean ± standard deviation (SD)) and coefficient of variation is 13% which is the weighted mean from these two studies (here  and here) of continuous glucose monitoring in healthy subjects. The standard deviation and coefficient of variation are measures of BG variability which I believe are important in T1DM. However, be advised that clinical outcomes in T1DM (i.e. microvascular and macrovascular complications) have only been documented to correlate with measures of mean BG, particularly HbA1c. This does not mean that BG variability is not important, but it just has not been documented to correlate with outcomes and complications of T1DM. Achieving a normal standard deviation or coefficient of variation in T1DM would be difficult, if not impossible, with current exogenous insulin therapy (injected or pumped). Monitoring the standard deviation and/or coefficient of variation and finding ways to improve them to the best of one’s ability is desirable in my opinion. Following a low carbohydrate ketogenic diet is one such method of reducing BG variability, mean BG, insulin doses, and hypoglycemia. A ketogenic diet may also provide an alternate/additional brain fuel in the form of ketones to protect the brain when BG does go low. The alternative energy that ketones supply to the brain may prevent or blunt the sympathoadrenal response to hypoglycemia which in turn reduces or eliminates the symptoms of and harm from hypoglycemia. This hypothesis needs to be tested before it can be stated as fact. Having BG close to normal most of the time (some of which are hypoglycemic) also minimizes the symptoms of mild hypoglycemia and potentially the harm from hypoglycemia as well due to lack of activation of the sympathetic nervous system and adrenal gland responses to hypoglycemia i.e. sympathoadrenal-induced fatal cardiac arrhythmia, see here.

Below are my BG readings along with the Humalog (rapid-acting insulin) doses in December 2017. I adjust both the morning and evening meal-time doses based on the pre-meal BG reading and take extra correction Humalog doses (green circles) for high BG readings between meals and my new post-exercise meal. I continued my previous pattern of high BG readings after weightlifting. This is primarily controlled by the basal insulin (Lantus) dose taken at dinnertime but that dose is determined by the fasting BG reading and thus cannot be adjusted to optimize all times of day. In those with T1DM the basal insulin dose may be enough to compensate for the increase in BG with intense exercise, but may also require a rapid-acting insulin dose to lower a high post-exercise BG.

Post 47 Humalog Doses and BG graphs

The table below shows the BG variability results for current and previous time periods. The percentiles (10th, 25th, 75th, 90th) on the right show the spread of the BG readings about the median. The interquartile range, the difference between the 75th and 25th percentiles, is a measure of BG variability. In the middle of the table are the %Time in three BG ranges: %Time BG < 61 mg/dl (hypo) and the mean BG during that time, then %Time BG 61-110 mg/dl (target) and the mean BG during that time, and %Time BG > 110 mg/dl (hyper) and the mean BG during that time. Both the %Time with hypoglycemia and hyperglycemia are probably overestimates because they do not account for the corrections with glucose tablets (for hypoglycemia) or rapid-acting insulin (Humalog) (for hyperglycemia). Measuring my BG more frequently or using a CGM would result in a more accurate estimate.

Post 47 Variability Table

The daily insulin dose totals and BG readings for December are shown in the graphs below. You can see a steady increase in total daily insulin dose during the month to address hyperglycemia.

Post 47 Insulin Dose Totals and BG graphs

The daily insulin dose totals and 7-day moving average for 2017 are shown in the graph below. You can see an oscillatory pattern with a period of about 8 weeks except for the past two months during which the total daily insulin dose steadily increased. Again this may in part be related to the additional meal per day and an increase in body weight of 4.4 lb.

Post 47 Insulin Doses for 2017

The graph below shows all my BG measurements in 2017. I realize there are so many points that it is difficult to make much sense of it, however, I include it for completeness sake.

Post 47 BG graph for 2017

In January, I will continue olympic weightlifting every day with two exercises per day. I will also restart metformin and see if I can tolerate it starting with a small dose (250 mg) and slowly increasing it over time as I have always told my patients.

My Thoughts About Management of Type 1 Diabetes With A Ketogenic Diet

My goal of glycemic management in T1DM with a ketogenic diet is to keep BG as close to normal i.e. 96 ± 12 mg/dl (mean ± SD) as is safely possible (i.e. avoiding hypoglycemia) to avoid diabetic complications, a reduction in lifespan, and unpleasant symptoms of as well as injury and death from hypoglycemia. For me, a well-formulated whole-food nutrient-dense ketogenic diet, daily exercise, frequent BG measurements, and lower insulin-analog doses (Humalog/Lantus) have improved my glycemic control, hypoglycemic reactions, and quality of life. My basic diet philosophy is to avoid processed foods especially those containing refined carbohydrates and sugar, while enjoying whole foods (one ingredient) as close to their original state as possible. I think most know that processed foods are made in factories with many ingredients for the purpose of prolonging their shelf life and increasing their addictiveness. Therefore, they use both salt and sugar which serve both those purposes. They also use vegetable oils (seed oils) because some fat is necessary in the manufacturing process and for mouth feel. Another common feature of the ingredients of processed foods is that they are subsidized by the U.S. government and therefore the market price is artificially reduced. Then the food industry “adds value” to these ingredients by their formulation and convenience and then markets them heavily resulting in a very profitable commodity to the food industry. Dr. Robert Lustig has said that sugar is added to 80% of processed foods. Many also have discovered that the majority of these foods can be avoided by shopping on the perimeter of the grocery store in the produce, meat, and dairy sections while avoiding the bakery, deli, and most of the center isles (of course there are some exceptions). I think just knowing the guidelines in this paragraph would be a good start for those wanting to improve their diet in 2018.

My current version of ketogenic diet is as follows:

What I Cook & Eat

  • Beef, grass-fed, including meat (85% lean), heart, liver, and kidney (liverwurst)
  • Fish, mainly wild Alaskan salmon
  • Canadian bacon (uncured pork loin)
  • Lamb occasionally
  • Chicken & Turkey occasionally
  • Chicken Eggs
  • Non-starchy vegetables (about 5% carbohydrate content by weight) including Cabbage (Red, Green, Napa), Kale, Collard Greens, Leeks, Onions, Home-made Sauerkraut from Red Cabbage, Bok-Choy, Broccoli, Cauliflower, Yellow Squash, Zucchini, Cucumber, Lettuce (Iceberg & Romaine), and some others.
  • Fruit – Avocado, Tomatoes, Olives, lemon juice on fish and salads
  • Root Vegetable: Raw Carrots
  • Nuts & Seeds – Pepitas, Macadamia, Brazil, Pecan, Walnut, Pistachio, Cashew.
  • MCT oil – a few tablespoons on salads or cooked vegetables
  • Note: I developed an intolerance to milk prior to my diagnosis of T1D. I did try heavy whipping cream after starting my KLCHF diet, but am also intolerant of it. I do tolerate butter, but wanted to decrease my fat intake, so eliminated all dairy including cheese and yogurt.

What I Drink

Water (filtered by reverse osmosis), Unsweetened Tea & Coffee

What I Don’t Eat

  • Grains – Wheat, Corn, Rice, Oats (there are many more) or anything made from them, which is too numerous to list here. Gluten is a protein present in a number of grains (all varieties of wheat including spelt, kamut, and triticale as well as barley and rye.) which can cause a number of medical problems for a significant portion of the population with gluten sensitivity or celiac disease. In my case, I avoid them due to their carbohydrate content.
  • Starchy and most root vegetables – potatoes, sweet potatoes, yams
  • Legumes – peas, beans, lentils, peanuts, soybeans
  • High sugar fruits – includes most fruits except berries, see above.
  • Sugar and the fifty other names used to disguise sugar.
  • Vegetable Oils – Canola, Corn, Soybean, Peanut, Sunflower, Safflower, Cottonseed, Grape seed, Margarine & Butter substitutes, Shortening.
  • All Processed Foods.
  • I avoid restaurants except when traveling, and then order fish or steak with plain steamed non-starchy vegetables (no gravy or sauces that typically contain sugar, cornstarch, or flour) or salad.
  • Refined, but healthy, fats – Although there is nothing bad about including butter, coconut & olive oil in a ketogenic diet, I have eliminated refined fats except a small amount of MCT oil from my diet to improve my body composition.

What I Don’t Drink

  • Colas (both sweetened and artificially sweetened).
  • Fruit Juice except small amounts of lemon juice.
  • Alcohol (can cause hyperglycemia or hypoglycemia in persons with diabetes).
  • No artificial sweeteners, don’t want or like them.

My exercise regimen negatively affects glycemic control, but I enjoy exercising and feel it has health and lifespan-extending benefits which may compensate for the temporary increase in BG during/after exercise. Hopefully my BG values and variability as well as the relatively lower insulin doses that result from my ketogenic diet and exercise are close enough to optimal to avoid any reduction in lifespan, diabetic complications, and harm from hypoglycemia, but only time will tell.

#46 November 2017 Update on My T1D Management

This is a monthly update on my glycemic management of type 1 diabetes (T1DM) using Humalog and Lantus insulin injections with resistance exercise and a ketogenic whole-food diet as described in my book, The Ketogenic Diet for Type 1 Diabetes also available on Amazon in print. Although glycemic management in T1DM will always be challenging, the low carbohydrate ketogenic whole-food diet definitely improves it and just as importantly reduces insulin requirements and frequency of symptomatic hypoglycemia. Many of the diseases (cardiovascular disease, cancer, Alzheimer’s, and many more) associated with T2DM and “double diabetes” as part of T1DM are due to insulin resistance and hyperinsulinemia. The low carbohydrate ketogenic whole-food diet directly improves both insulin resistance and hyperinsulinemia in T2DM and in T1DM via reduced insulin doses.

Last month I detailed my treatment plan for my presumed left rotator cuff injury. Although it seems to be slow to recover, it has improved significantly throughout the months of October and November. I started back doing snatch overhead squats on October 27th and snatch and clean and jerks on November 26th. So far no shoulder pain during exercise, but some soreness with certain arm movements in daily life. I interpret this as much improvement, but not as yet complete recovery. In November, I continued once daily weightlifting workouts with three exercises per day lasting about 2 hours including warmup, rest between lifts, and cool down. I have previously discussed the change in blood glucose (BG) with exercise. I have and still experience a significant rise in BG during weightlifting which I felt was due to stress hormone release from intense exercise. However, I am thinking that more likely the BG response to exercise is primarily related to the adequacy or inadequacy of the basal insulin dose. What I have noticed is that when the fasting BG is normal (BG 61-110 mg/dl), the BG rises during weightlifting. But when the fasting BG is low (BG < 61 mg/dl), the BG does not rise during weightlifting and when the fasting BG is high (BG > 110 mg/dl), the BG rises even more dramatically during weightlifting. Of course, there is a lot of variability and these are general observations, not rules or predictable responses. For me, there does not seem to be one basal insulin dose that will result in both a normal fasting BG and a normal post-exercise BG. Several years ago I tried splitting up the basal insulin dose to a morning and dinner-time dose to address this issue with no improvement. For safety reasons, I think it is best to adjust the basal insulin dose (Lantus) to achieve a normal fasting BG and accept and treat an elevated post-exercise BG with a correction dose of rapid-acting insulin (Humalog). I have taken a small correction dose of rapid-acting insulin (Humalog) (about 1-2 IU) to correct a high post-breakfast BG prior to exercise with success most of the time. Once this month, I took glucose during exercise because I was not feeling well (dizzy after lifts) without first checking my BG. That was a mistake: my BG was over 200 mg/dl post-exercise and it took all day to correct. Also, on November 6th I had a symptomatic hypoglycemic episode. This one occurred a couple hours after dinner. My pre-meal BG was 45 mg/dl so I did not take any rapid-acting insulin (Humalog) and took one less IU of basal insulin (Lantus), 29 IU instead of 30 IU, because I have had hypoglycemia in the past just from the basal insulin dose post-exercise (improved insulin sensitivity). The symptoms of this month’s hypoglycemic episode were sweating and a feeling of impending doom. This latter symptom led to my over-treating it with glucose tablets. I took 5 or 6 instead of 2 or 3 for this symptomatic episode. My bedtime post-treatment BG was 83 mg/dl, but I suspected it would be high the following morning. Sure enough, it was 211 mg/dl in the morning and elevated most the next day requiring 4 extra Humalog correction doses. I’m not sure what I could have done differently other than increase the carbohydrate content of the dinner meal. Taking fewer glucose tablets would have helped, but only those who have experienced hypoglycemia can understand the desire to correct the BG ASAP when there is a fear of impending doom.

Glycemic Management Results for November 2017 

My November glycemic results were similar to previous time periods with more hypoglycemia and hyperglycemia than I would have liked. I only spent 51% of time with a BG between 61 and 110 mg/dl (my goal is >70%). My insulin doses varied up and down in response to high or low BG in the range of 29 to 50 units/day with a slight downward trend during the month.

Below are my mean BG values, mean insulin doses, and BG frequency distribution for November 2017 compared to previous time periods. I have changed two columns to indicate the AUC mean BG and predicted HbA1c. AUC mean BG is the mean BG by calculating the area under the curve (AUC) of BG versus time. The predicted HbA1c uses the formula: AUC mean BG plus 88.55 divided 33.298. This formula is the least squares fit using my own personal mean BG versus measured HbA1c over many years. My particular HbA1c values are higher than many other individuals with the same mean BG. This is referred to as being a “high glycator.”

Post 46 Means Table

As discussed previously, exogenous insulin cannot mimic normal insulin secretion, so persons with T1DM should not expect to have truly normal BG values at all times. They just need to be low enough to prevent long-term complications and not so low as to cause unpleasant hypoglycemic symptoms or less common but dangerous consequences including brain damage, seizure, injury, coma, or death. I have set my target BG range at 61-110 mg/dl because values in this range are not likely to lead to harm or complications of T1DM. Your target BG range should be determined with your physician because one size does not fit all. Normal BG is 96 ± 12 mg/dl (mean ± standard deviation (SD)) and coefficient of variation is 13% which is the weighted mean from these two studies (here  and here ) of continuous glucose monitoring in healthy subjects. The standard deviation and coefficient of variation are measures of BG variability which I believe are important in T1DM. However, be advised that clinical outcomes in T1DM (i.e. microvascular and macrovascular complications) have only been documented to correlate with measures of mean BG, particularly HbA1c. This does not mean that BG variability is not important, but it just has not been documented to correlate with outcomes and complications of T1DM. Achieving a normal standard deviation or coefficient of variation in T1DM would be difficult, if not impossible, with current exogenous insulin therapy (injected or pumped). Monitoring the standard deviation and/or coefficient of variation and finding ways to improve them to the best of one’s ability is desirable in my opinion. Following a low carbohydrate ketogenic diet is one such method of reducing BG variability, mean BG, insulin doses, and hypoglycemia. A ketogenic diet and MCT oil used on salads or vegetables at dinnertime may also provide an alternate/additional brain fuel in the form of ketones to protect the brain when BG does go low. The alternative energy that ketones supply to the brain may prevent or blunt the sympathoadrenal response to hypoglycemia which in turn reduces or eliminates the symptoms of and harm from hypoglycemia. This hypothesis needs to be tested before it can be stated as fact. Having BG close to normal most of the time (some of which are hypoglycemic) also minimizes the symptoms of mild hypoglycemia and potentially the harm from hypoglycemia as well due to lack of activation of the sympathetic nervous system and adrenal gland responses to hypoglycemia i.e. sympathoadrenal-induced fatal cardiac arrhythmia, see here.

Below are my BG readings along with the Humalog (rapid-acting insulin) doses in November 2017. I adjust both the morning and evening meal-time doses based on the pre-meal BG reading and take extra correction Humalog doses (green circles) for high BG readings between meals. I continued my previous pattern of high BG readings after weightlifting. This is primarily controlled by the basal insulin (Lantus) dose taken at dinnertime but that dose is determined by the fasting BG reading and thus cannot be adjusted to optimize all times of day. In those with T1DM the basal insulin dose may be enough to compensate for the increase in BG with intense exercise, but may also require a rapid-acting insulin dose to lower a high post-exercise BG.

Post 46 Blood Glucose and Humalog Doses

The table below shows the BG variability results for current and previous time periods. The percentiles (10th, 25th, 75th, 90th) on the right show the spread of the BG readings about the median. The interquartile range, the difference between the 75th and 25th percentiles, is a measure of BG variability. In the middle of the table are the %Time in three BG ranges: %Time BG < 61 mg/dl (hypo) and the mean BG during that time, then %Time BG 61-110 mg/dl (target) and the mean BG during that time, and %Time BG > 110 mg/dl (hyper) and the mean BG during that time. Both the %Time with hypoglycemia and hyperglycemia are probably overestimates because they not account for the corrections with glucose tablets (for hypoglycemia) or rapid-acting insulin (Humalog) (for hyperglycemia). Measuring my BG more frequently or using a CGM would result in a more accurate estimate. In November, the BG standard deviation and coefficient of variation and %Time with hypoglycemia were higher than usual.

Post 46 Variability Table

The daily insulin dose totals and BG readings for November are shown in the graphs below. You can see a slight downward trend in total daily insulin dose with several spikes (for hyperglycemia) during the month.

Post 46 Blood Glucose and Insulin Dose Totals

The daily insulin dose totals and 7-day moving average for 2017 are shown in the graph below. You can see an oscillatory pattern with a period of about 8 weeks. In October and November there was some stabilization of insulin doses. I think it is too early to say that I have solved the problem of oscillating insulin doses, but I did change the procedure of drawing insulin from the vial into the syringe by not injecting air into the vial with a reused needle and I have been adjusting my basal insulin (Lantus) dose less frequently and to a smaller degree.

Post 46 2017 Insulin Doses

In December, I will continue olympic weightlifting every day with three exercises per day one of which will be either snatch or clean and jerk (alternating days) as long as I don’t have any shoulder problems.

My Thoughts About Management of Type 1 Diabetes With A Ketogenic Diet

My goal of glycemic management in T1DM with a ketogenic diet is to keep BG as close to normal i.e. 96 ± 12 mg/dl (mean ± SD) as is safely possible (i.e. avoiding hypoglycemia) to avoid diabetic complications, a reduction in lifespan, and unpleasant symptoms of as well as injury and death from hypoglycemia. For me, a well-formulated whole-food nutrient-dense ketogenic diet, daily exercise, frequent BG measurements, and lower insulin-analog doses (Humalog/Lantus) have improved my glycemic control, hypoglycemic reactions, and quality of life.  For the past two months, I have stopped using berries to correct asymptomatic hypoglycemia because the response is too unpredictable compared to glucose tablets. I also found I was intolerant of spinach (diarrhea), bell peppers, and eggplant (diarrhea, nausea).

My current diet looks like this.

What I Cook & Eat

  • Beef, grass-fed, including meat (85% lean), heart, liver, and kidney (liverwurst)
  • Fish, mainly wild Alaskan salmon
  • Canadian bacon (uncured pork loin)
  • Lamb occasionally
  • Chicken & Turkey occasionally
  • Chicken Eggs
  • Non-starchy vegetables (about 5% carbohydrate content by weight) including Cabbage (Red, Green, Napa), Kale, Collard Greens, Leeks, Onions, Home-made Sauerkraut from Red Cabbage, Bok-Choy, Broccoli, Cauliflower, Yellow Squash, Zucchini, Cucumber, Lettuce (Iceberg & Romaine), and some others.
  • Fruit – Avocado, Tomatoes, Olives, lemon juice on fish and salads
  • Root Vegetable: Raw Carrots
  • Nuts & Seeds – Pepitas, Macadamia, Brazil, Pecan, Walnut, Pistachio, Cashew.
  • MCT oil – a few tablespoons on salads or cooked vegetables
  • Note: I developed an intolerance to milk prior to my diagnosis of T1D. I did try heavy whipping cream after starting my KLCHF diet, but am also intolerant of it. I do tolerate butter, but wanted to decrease my fat intake, so eliminated all dairy including cheese and yogurt.

What I Drink

Water (filtered by reverse osmosis), Unsweetened Tea & Coffee

What I Don’t Eat

  • Grains – Wheat, Corn, Rice, Oats (there are many more) or anything made from them, which is too numerous to list here. Gluten is a protein present in a number of grains (all varieties of wheat including spelt, kamut, and triticale as well as barley and rye.) which can cause a number of medical problems for a significant portion of the population with gluten sensitivity or celiac disease. In my case, I avoid them due to their carbohydrate content.
  • Starchy and most root vegetables – potatoes, sweet potatoes, yams
  • Legumes – peas, beans, lentils, peanuts, soybeans
  • High sugar fruits – includes most fruits except berries, see above.
  • Sugar and the fifty other names used to disguise sugar.
  • Vegetable Oils – Canola, Corn, Soybean, Peanut, Sunflower, Safflower, Cottonseed, Grape seed, Margarine & Butter substitutes, Shortening.
  • All Processed Food-like Substances i.e., most of what is in the grocery store.
  • I avoid restaurants except when traveling, and then order fish or steak with plain steamed non-starchy vegetables (no gravy or sauces that typically contain sugar, cornstarch, or flour) or salad.
  • Refined, but healthy, fats – I have eliminated refined fats except MCT oil from my diet including butter, coconut & olive oils to improve body composition and remain in the 77kg olympic weightlifting weight class.

What I Don’t Drink

  • Colas (both sweetened, artificially sweetened, and unsweetened).
  • Fruit Juice except small amounts of lemon juice.
  • Alcohol (can cause hyperglycemia or hypoglycemia in persons with diabetes).
  • No artificial sweeteners, don’t need or like them.

When my entire diet is analyzed, 26% of my fat intake is from polyunsaturates (mainly from nuts and seeds), 56% is from monounsaturates, and 18% is from saturated fats. When my diet is broken down by macronutrients, I consume 170 grams of fat (or 68% of my total daily calories), 70 grams of carbohydrate, 30 grams of which is dietary fiber (or 12% of my total daily calories), and 110 grams of protein (or 20% of my total daily calories). In calories, it totals to 2,250 kcal/day.

My exercise regimen makes glycemic management more challenging, but I enjoy exercise and feel it has other health and lifespan-extending benefits. Hopefully, my BG values and variability as well as my lower insulin doses that result from my ketogenic diet and exercise are close enough to optimal to avoid any reduction in lifespan, diabetic complications, and harm from hypoglycemia, but only time will tell.

#45 October 2017 Update on My T1D Management

 

This is a monthly update on my glycemic management of type 1 diabetes (T1DM) using Humalog and Lantus insulin injections with resistance exercise and a ketogenic whole-food diet as described in my book, The Ketogenic Diet for Type 1 Diabetes also available on Amazon in print.

I had stopped doing snatch and clean and jerk exercises in October to allow my left rotator cuff to heal. I originally injured it in March 2017 and it was primarily bothersome holding the bar overhead sometimes, but not others. I did notice it at other times, particularly when sleeping, but seemed pretty minor overall. I initially thought it would just go away, but after six months of it continuing to nag me, I sought a restorative plan to heal it. As mentioned I stopped all overhead movements, but in addition I found a book: Shoulder Pain? The Solution & Prevention: Fourth Edition, by John M. Kirsch M.D. In the book he states that most shoulder problems are due to contraction of the CA arch which results in shoulder impingement which in turn results in injury to the underlying rotator cuff. The rotator cuff is responsible for external rotation of the shoulder. External rotation is used in a minority of sports, but it is used extensively in olympic weightlifting. A more common example of external shoulder rotation is a backhand tennis swing. Dr. Kirsch explains “The CA arch is a curved structure in the shoulder that overlies the rotator cuff tendons and includes the coracoacromial ligament, the acromion, the coracoid process and other ligament’s connecting the acromion and the coracoid process.” The solution is passive hanging from a pull-up bar to lengthen the CA arch and light-weight dumbbell exercises to strengthen the rotator cuff muscles which I started a month ago. I am just now noticing that I am no longer experiencing any discomfort in my shoulder so I am going to start back with light weight snatch overhead squats first before returning to the actual olympic lifts. In October, I continued once daily weightlifting workouts and added just added the snatch overhead squats alternating with farmers carry to the two other exercises per day (squat and deadlift) all lasting about 2 hours including warmup, rest between lifts, and cool down.

Glycemic Management Results for October 2017

My October glycemic results were similar to previous time periods with more hypoglycemia and hyperglycemia than I would like and I only spent 50% of time with a blood glucose (BG) between 61 and 110 mg/dl (my goal is 70%). My insulin doses varyed up and down in response to low or high BG in the range of 30 to 40 IU/day or so with no definite up or down trends. Fortunately, I had no symptoms of hypoglycemia in October.

Below are my mean BG values, mean insulin doses, and BG frequency distribution for October 2017 compared to previous time periods. I have changed two columns to indicate the AUC mean BG and predicted HbA1c. AUC mean BG is the mean BG by calculating the area under the curve (AUC) of BG versus time. The predicted HbA1c uses the formula: AUC mean BG plus 88.55 divided 33.298. This formula is the least squares fit using my own personal mean BG versus measured HbA1c over many years. My particular HbA1c values are higher than many other individuals with the same mean BG. This is referred to as being a “high glycator.”

Post 45 Means Table

As presented in blog post #15 exogenous insulin cannot mimic normal insulin secretion, so persons with T1DM should not expect to have truly normal BG values at all times. They just need to be low enough to prevent long-term complications and not so low as to cause unpleasant hypoglycemic symptoms or less common but dangerous consequences including brain damage, seizure, injury, coma, or death. I have set my target BG range at 61-110 mg/dl because values in this range are not likely to lead to harm or complications of T1DM. Your target BG range should be determined with your physician because one size does not fit all. Normal BG is 96 ± 12 mg/dl (mean ± standard deviation (SD)) and coefficient of variation is 13% which is the weighted mean from these two studies (here  and here) of continuous glucose monitoring in healthy subjects. The standard deviation and coefficient of variation are measures of BG variability which I believe are important in T1DM. However, be advised that clinical outcomes in T1DM (i.e. microvascular and macrovascular complications) have only been documented to correlate with measures of mean BG, particularly HbA1c. This does not mean that BG variability is not important, but it just has not been documented to correlate with outcomes and complications of T1DM. Achieving a normal standard deviation or coefficient of variation in T1DM would be difficult, if not impossible, with current exogenous insulin therapy (injected or pumped). Monitoring the standard deviation and/or coefficient of variation and finding ways to improve them to the best of one’s ability is desirable in my opinion. Following a low carbohydrate ketogenic diet is one such method of reducing BG variability, mean BG, insulin doses, and hypoglycemia. A ketogenic diet and MCT oil used on salads at dinnertime may also provide an alternate/additional brain fuel in the form of ketones to protect the brain when BG does go low. The alternative energy that ketones supply to the brain may prevent or blunt the sympathoadrenal response to hypoglycemia which in turn reduces or eliminates the symptoms of and harm from hypoglycemia. This hypothesis needs to be tested before it can be stated as fact. Having BG close to normal most of the time (some of which are hypoglycemic) also minimizes the symptoms of mild hypoglycemia and potentially the harm from hypoglycemia as well due to lack of activation of the sympathetic nervous system and adrenal gland responses to hypoglycemia i.e. sympathoadrenal-induced fatal cardiac arrhythmia, see here.

Below are my BG readings along with the Humalog (rapid-acting insulin) doses in October 2017. I adjust both the morning and evening meal-time doses based on the pre-meal BG reading and take extra correction Humalog doses (green circles) for high BG readings between meals. I returned to my previous pattern of high BG readings after weightlifting. This is primarily controlled by the basal insulin (Lantus) dose taken at dinnertime but that dose is determined by the fasting BG reading and thus cannot be adjusted to optimize all times of day. Those without diabetes can experience an increase in BG with intense exercise, see here. In those with T1DM the basal insulin dose may be enough to compensate for the increase in BG with intense exercise, but may also require a rapid-acting insulin dose to lower a high post-exercise BG.

Post 45 Humalog Doses vs BG graph

The table below shows the BG variability results for current and previous time periods. The percentiles (10th, 25th, 75th, 90th) on the right show the spread of the BG readings about the median. The interquartile range, the difference between the 75th and 25th percentiles, is a measure of BG variability. In the middle of the table are the %Time in three BG ranges: %Time BG < 61 mg/dl (hypo) and the mean BG during that time, then %Time BG 61-110 mg/dl (target) and the mean BG during that time, and %Time BG > 110 mg/dl (hyper) and the mean BG during that time. The other measures of BG variability were defined and explained in blog post #10.

Post 45 Variability Table

The daily insulin dose totals and BG readings are shown in the graphs below. You can see there was no consistent up or down trend in insulin doses and that the total daily insulin dose varied between 30 and 44 IU/day.

Post 45 Insulin Dose Totals and BG graph

The daily insulin dose totals and the 7 day moving average for 2017 are shown in the graph below. You can see an oscillatory pattern with a period of about 8 weeks. In October there was some stabilization of insulin doses. I think it is too early to say that I have solved the problem of oscillating insulin doses, but I did change my procedure of drawing insulin from the vial into the syringe by not injecting air into the vial with a reused needle. It is possible that some old polymerized insulin could be reinjected into the vial which could cause inactivation of the insulin in the vial. This in turn would result in a progressive increase in insulin dose required until a new vial was used and then the doses would decline as a result of hypoglycemia from the more active insulin in the new vial. It’s a theory anyway.

Post 45 Insulin Doses in 2017 graphs

In November, I will continue olympic weightlifting every day with three exercises per day one of which will be either snatch or clean and jerk once I am sure my shoulder has healed completely.

My Thoughts About Management of Type 1 Diabetes With A Ketogenic Diet

My goal of glycemic management in T1DM with a ketogenic diet is to keep BG as close to normal i.e. 96 ± 12 mg/dl (mean ± SD) as is safely possible (i.e. avoiding hypoglycemia) to avoid diabetic complications, a reduction in lifespan, and unpleasant symptoms of as well as injury and death from hypoglycemia. For me, a well-formulated whole-food nutrient-dense ketogenic diet, daily exercise, frequent BG measurements, and lower insulin-analog doses (Humalog/Lantus) have improved my glycemic control, hypoglycemic reactions, and quality of life. My current version of ketogenic diet has changed slightly since I last wrote about it in detail in blog post #9.

My current diet looks like this.

What I Cook & Eat

  • Beef, grass-fed, including meat (85% lean), heart, liver, and kidney (liverwurst)
  • Fish, mainly wild Alaskan salmon
  • Canadian bacon (uncured pork loin)
  • Lamb occasionally
  • Chicken & Turkey occasionally
  • Chicken Eggs
  • Non-starchy vegetables (about 5% carbohydrate content by weight) including Cabbage (Red, Green, Napa), Kale, Collard Greens, Spinach, Bell Peppers, Leeks, Onions, Brussels sprouts, Home-made Sauerkraut from Red Cabbage, Bok-Choy, Broccoli, Cauliflower, Yellow Squash, Zucchini, Cucumber, Lettuce (Iceberg & Romaine), and some others.
  • Fruit – Avocado, Tomatoes, Olives, Strawberries, Blueberries, Blackberries, lemon juice on fish and salads
  • Root Vegetable: Raw Carrots
  • Nuts & Seeds – Pepitas, Macadamia, Brazil, Pecan, Walnut, Pistachio, Cashew.
  • MCT oil – a few tablespoons on salads
  • Note: I developed an intolerance to milk prior to my diagnosis of T1D. I did try heavy whipping cream after starting my KLCHF diet, but am also intolerant of it. I do tolerate butter, but wanted to decrease my fat intake, so eliminated all dairy including cheese and yogurt.

What I Drink

Water (filtered by reverse osmosis), Unsweetened Tea & Coffee

What I Don’t Eat

  • Grains – Wheat, Corn, Rice, Oats (there are many more) or anything made from them, which is too numerous to list here. Gluten is a protein present in a number of grains (all varieties of wheat including spelt, kamut, and triticale as well as barley and rye.) which can cause a number of medical problems for a significant portion of the population with gluten sensitivity or celiac disease. In my case, I avoid them due to their carbohydrate content.
  • Starchy and most root vegetables – potatoes, sweet potatoes, yams
  • Legumes – peas, beans, lentils, peanuts, soybeans
  • High sugar fruits – includes most fruits except berries, see above.
  • Sugar and the fifty other names used to disguise sugar.
  • Vegetable Oils – Canola, Corn, Soybean, Peanut, Sunflower, Safflower, Cottonseed, Grape seed, Margarine & Butter substitutes, Shortening.
  • All Processed Food-like Substances i.e., most of what is in the grocery store.
  • I avoid restaurants except when traveling, and then order fish or steak with plain steamed non-starchy vegetables (no gravy or sauces that typically contain sugar, cornstarch, or flour) or salad.
  • Refined, but healthy, fats – I have eliminated refined fats except MCT oil from my diet including butter, coconut & olive oils to improve body composition and remain in the 77kg olympic weightlifting weight class.

What I Don’t Drink

  • Colas (both sweetened, artificially sweetened, and unsweetened).
  • Fruit Juice except small amounts of lemon juice.
  • Alcohol (can cause hyperglycemia or hypoglycemia in persons with diabetes).
  • No artificial sweeteners, don’t need or like them.

When my entire diet is analyzed, 26% of my fat intake is from polyunsaturates (mainly from nuts and seeds), 56% is from monounsaturates, and 18% is from saturated fats. When my diet is broken down by macronutrients, I consume 170 grams of fat (or 68% of my total daily calories), 70 grams of carbohydrate, 30 grams of which is dietary fiber (or 12% of my total daily calories), and 110 grams of protein (or 20% of my total daily calories). In calories, it totals to 2,250 kcal/day.

My exercise regimen makes glycemic management more challenging, but I enjoy exercise and feel it has other health and lifespan-extending benefits. Hopefully, my BG values and variability as well as my lower insulin doses that result from my ketogenic diet and exercise are close enough to optimal to avoid any reduction in lifespan, diabetic complications, and harm from hypoglycemia, but only time will tell.

#44 September 2017 Update on My T1D Management

This is a monthly update on my glycemic management of type 1 diabetes (T1DM) using Humalog and Lantus insulin injections with resistance exercise and a ketogenic real-food diet as described in my book, The Ketogenic Diet for Type 1 Diabetes also available on Amazon in print. My coauthor, Ellen Davis, over at the Ketogenic-Diet-Resource.com website and her team have come out with a new ketogenic meal planning tool. It’s called KetoPoints and it uses a points-based system to make ketogenic meal planning really easy. The app includes starter meals, five informative guides on getting started and staying on track, a step-by-step process for building each meal, cooking directions and more. In addition, new, personalized meals will be added to the program monthly. You can sign up for a 3 week challenge or go for a monthly subscription. I have not used the tool myself, but it may be helpful for those just getting started with a ketogenic diet.

I had stopped eating sweet potato (on August 24) to understand if the extra carbohydrate had a positive effect on my strength. On September 17, I set two personal bests in my weightlifting: a 165 lb. snatch and 215 lb. clean & jerk which occurred 6 months after my previous personal best of 209 lb. on March 26, 2017. During the remainder of September, my weightlifting results were better than when I was taking sweet potato. Thus, I feel that the extra 30 grams of carbohydrate was not helping my performance. In September, continued once daily weightlifting workouts with only two exercises per day lasting about 2 hours including warmup, rest between lifts, and cool down.

Glycemic Management Results for September 2017

My September glycemic results were noteworthy for low BG readings requiring a reduction in insulin doses during the month. Fortunately, I had no symptoms of hypoglycemia in September. Hypoglycemia in a person with T1DM who is conscientiously trying to control BG is a real danger that should be minimized. However in September, I had much more hypoglycemia than usual.

Below are my mean BG values, mean insulin doses, and BG frequency distribution for September 2017 compared to previous time periods. I have changed two columns to indicate the AUC mean BG and predicted HbA1c. AUC mean BG is the mean BG by calculating the area under the curve (AUC) of BG versus time. The predicted HbA1c uses the formula: AUC mean BG plus 88.55 divided 33.298. This formula is the least squares fit using my own personal mean BG versus measured HbA1c over many years. My particular HbA1c values are higher than many other individuals with the same mean BG. This is referred to as being a “high glycator.”

Post 44 Means Table

As presented in blog post #15 exogenous insulin cannot mimic normal insulin secretion, so persons with T1DM should not expect to have truly normal BG values at all times. They just need to be low enough to prevent long-term complications and not so low as to cause unpleasant hypoglycemic symptoms or less common but dangerous consequences including brain damage, seizure, injury, coma, or death. I have set my target BG range at 61-110 mg/dl because values in this range are not likely to lead to harm or complications of T1DM. Your target BG range should be determined with your physician because one size does not fit all. Normal BG is 96 ± 12 mg/dl (mean ± standard deviation (SD)) and coefficient of variation is 13% which is the weighted mean from these two studies (here  and here) of continuous glucose monitoring in healthy subjects. The standard deviation and coefficient of variation are measures of BG variability which I believe are important in T1DM. However, be advised that clinical outcomes in T1DM (i.e. microvascular and macrovascular complications) have only been documented to correlate with measures of mean BG, particularly HbA1c. This does not mean that BG variability is not important, but it just has not been documented to correlate with outcomes and complications of T1DM. Achieving a normal standard deviation or coefficient of variation in T1DM would be difficult, if not impossible, with current exogenous insulin therapy (injected or pumped). Monitoring the standard deviation and/or coefficient of variation and finding ways to improve them to the best of one’s ability is desirable in my opinion. Following a low carbohydrate ketogenic diet is one such method of reducing BG variability, mean BG, insulin doses, and hypoglycemia. A ketogenic diet may also provide an alternate/additional brain fuel in the form of ketones to protect the brain when BG does go low. The alternative energy that ketones supply to the brain may prevent or blunt the sympathoadrenal response to hypoglycemia which in turn reduces or eliminates the symptoms of and harm from hypoglycemia. This hypothesis needs to be tested before it can be stated as fact. Having BG close to normal most of the time (some of which are hypoglycemic) also minimizes the symptoms of mild hypoglycemia and potentially the harm from hypoglycemia as well due to lack of activation of the sympathetic nervous system and adrenal gland responses to hypoglycemia i.e. sympathoadrenal-induced fatal cardiac arrhythmia, see here.

Below are my BG readings along with the Humalog (rapid-acting insulin) doses in September 2017. You can see below that both the morning and evening meal-time doses had to be decreased due to low BG readings. Many of these low BG readings occurred during/after weightlifting which previously resulted in hyperglycemia. The point here is that a basal insulin dose that is higher than current needs can override any stress hormone response to intense resistance exercise. Those without diabetes can experience an increase in BG with intense exercise, see here.

Post 44 Humalog Doses vs BG graph

The table below shows the BG variability results for current and previous time periods. The percentiles (10th, 25th, 75th, 90th) on the right show the spread of the BG readings about the median. The interquartile range, the difference between the 75th and 25th percentiles, is a measure of BG variability. In the middle of the table are the %Time in three BG ranges: %Time BG < 61 mg/dl (hypo) and the mean BG during that time, then %Time BG 61-110 mg/dl (target) and the mean BG during that time, and %Time BG > 110 mg/dl (hyper) and the mean BG during that time. The other measures of BG variability were defined and explained in blog post #10.

Post 44 Variability Table

The daily insulin dose totals and BG readings are shown in the graphs below. You can see that I had to decrease my total insulin dose progressively during the month from 53 IU/day to 30 IU/day.

Post 44 Insulin Dose Totals and BG graph

The daily insulin dose totals for 2017 are shown in the graph below. You can see an oscillatory pattern with a period of about 8 weeks. The cause for this is unclear at this point, but I am making changes in my insulin dosing procedures and will followup on this next month.

Post 44 Insulin Doses in 2017 graphs

In October, I will continue olympic weightlifting every day with just two exercises per day.

My Thoughts About Management of Type 1 Diabetes With A Ketogenic Diet

My goal of glycemic management in T1DM with a ketogenic diet is to keep BG as close to normal i.e. 96 ± 12 mg/dl (mean ± SD) as is safely possible (i.e. avoiding hypoglycemia) to avoid diabetic complications, a reduction in lifespan, and unpleasant symptoms of as well as injury and death from hypoglycemia. For me, a well-formulated whole-food nutrient-dense ketogenic diet, daily exercise, frequent BG measurements, and lower insulin-analog doses (Humalog/Lantus) have improved my glycemic control, hypoglycemic reactions, and quality of life. My current version of ketogenic diet has changed slightly since I last wrote about it in detail in blog post #9.

My current diet looks like this.

What I Cook & Eat

  • Beef, grass-fed, including meat (85% lean), heart, liver, and kidney (liverwurst)
  • Fish, mainly wild Alaskan salmon
  • Canadian bacon (uncured pork loin)
  • Lamb occasionally
  • Chicken & Turkey occasionally
  • Chicken Eggs
  • Non-starchy vegetables (about 5% carbohydrate content by weight) including Cabbage (Red, Green, Napa), Kale, Collard Greens, Spinach, Bell Peppers, Leeks, Onions, Brussels sprouts, Home-made Sauerkraut from Red Cabbage, Bok-Choy, Broccoli, Cauliflower, Yellow Squash, Zucchini, Cucumber, Lettuce (Iceberg & Romaine), and some others.
  • Fruit – Avocado, Tomatoes, Olives, Strawberries, Blueberries, Blackberries, lemon juice on fish and salads
  • Root Vegetable: Raw Carrots
  • Nuts & Seeds – Pepitas, Macadamia, Brazil, Pecan, Walnut, Pistachio, Cashew.
  • MCT oil – a few tablespoons on salads
  • Note: I developed an intolerance to milk prior to my diagnosis of T1D. I did try heavy whipping cream after starting my KLCHF diet, but am also intolerant of it. I do tolerate butter, but wanted to decrease my fat intake, so eliminated all dairy including cheese and yogurt.

What I Drink

Water (filtered by reverse osmosis), Unsweetened Tea & Coffee

What I Don’t Eat

  • Grains – Wheat, Corn, Rice, Oats (there are many more) or anything made from them, which is too numerous to list here. Gluten is a protein present in a number of grains (all varieties of wheat including spelt, kamut, and triticale as well as barley and rye.) which can cause a number of medical problems for a significant portion of the population with gluten sensitivity or celiac disease. In my case, I avoid them due to their carbohydrate content.
  • Starchy and most root vegetables – potatoes, sweet potatoes, yams
  • Legumes – peas, beans, lentils, peanuts, soybeans
  • High sugar fruits – includes most fruits except berries, see above.
  • Sugar and the fifty other names used to disguise sugar.
  • Vegetable Oils – Canola, Corn, Soybean, Peanut, Sunflower, Safflower, Cottonseed, Grape seed, Margarine & Butter substitutes, Shortening.
  • All Processed Food-like Substances i.e., most of what is in the grocery store.
  • I avoid restaurants except when traveling, and then order fish or steak with plain steamed non-starchy vegetables (no gravy or sauces that typically contain sugar, cornstarch, or flour) or salad.
  • Refined, but healthy, fats – I have eliminated refined fats except MCT oil from my diet including butter, coconut & olive oils to improve body composition and remain in the 77kg olympic weightlifting weight class.

What I Don’t Drink

  • Colas (both sweetened, artificially sweetened, and unsweetened).
  • Fruit Juice except small amounts of lemon juice.
  • Alcohol (can cause hyperglycemia or hypoglycemia in persons with diabetes).
  • No artificial sweeteners, don’t need or like them.

When my entire diet is analyzed, 26% of my fat intake is from polyunsaturates (mainly from nuts and seeds), 56% is from monounsaturates, and 18% is from saturated fats. When my diet is broken down by macronutrients, I consume 170 grams of fat (or 68% of my total daily calories), 70 grams of carbohydrate, 30 grams of which is dietary fiber (or 12% of my total daily calories), and 110 grams of protein (or 20% of my total daily calories). In calories, it totals to 2,250 kcal/day.

My exercise regimen makes glycemic management more challenging, but I enjoy exercise and feel it has other health and lifespan-extending benefits. Hopefully, my BG values and variability as well as my lower insulin doses that result from my ketogenic diet and exercise are close enough to optimal to avoid any reduction in lifespan, diabetic complications, and harm from hypoglycemia, but only time will tell.

#43 August 2017 Update on My T1D Management

 

This is a monthly update on my glycemic management of type 1 diabetes (T1DM) using Humalog and Lantus insulin injections with resistance exercise and a ketogenic real-food diet as described in my book, The Ketogenic Diet for Type 1 Diabetes also available on Amazon in print.

In August 2017, I continued using sweet potato once daily primarily at dinnertime to see if it might improve my weightlifting performance. I will have to wait to see if my performance changes, if any, after stopping sweet potato on August 24 to understand if it was effective. I changed my weightlifting schedule on August 3rd from every other day to once daily in the hopes of improving my glycemic control. My improved insulin sensitivity from weightlifting only lasts 24 hours, so daily exercise of the same type might help stabilize my insulin sensitivity and blood glucose (BG). I had previously experimented with daily weightlifting in the past but it resulted in overtraining. This time I cut the number of exercises down to just two per day. That seems to be working for now in terms of not too much or too little. Along with the change in exercise schedule, I ate a half of a sweet potato weighing about 150 grams or 30 grams of total carbohydrate each evening until August 24th. Since stopping the sweet potato I have not felt any reduction in energy, but I will reserve judgement for a few more weeks.

Glycemic Management Results for August 2017 

August 2017 glycemic results were noteworthy for more hyperglycemia with increasing insulin doses during the month. Some of this increase in insulin dose and hyperglycemia for that matter could have been related to the sweet potato. Fortunately, I had fewer low BG values and they were not associated with symptoms this month. Hypoglycemia in a person with T1DM who is conscientiously trying to control BG is a real danger that should be minimized. This is accomplished by considering the many factors that affect BG response to exogenous insulin including dietary carbohydrate and protein, exercise, sleep (lack of sleep increases insulin resistance) and by slightly underestimating the insulin dose (e.g. by 0.5 IU) to be administered (in my opinion). Additional insulin correction doses can always be given later to correct hyperglycemia. In fact, I had to take 25 correction doses this month due to hyperglycemia.

Below are my mean BG values, mean insulin doses, and BG frequency distribution for August 2017 compared to previous time periods. I have changed two columns to indicate the AUC mean BG and predicted HbA1c. AUC mean BG is the mean BG by calculating the area under the curve (AUC) of BG versus time. The predicted HbA1c uses the formula: AUC mean BG plus 88.55 divided 33.298. This formula is the least squares fit using my own personal mean BG versus measured HbA1c over many years. My particular HbA1c values are higher than many other individuals with the same mean BG. This is referred to as being a “high glycator.”

Post 43 Means Table

As presented in blog post #15 exogenous insulin cannot mimic normal insulin secretion, so persons with T1DM should not expect to have truly normal BG values at all times. They just need to be low enough to prevent long-term complications and not so low as to cause unpleasant hypoglycemic symptoms or less common but dangerous consequences including brain damage, seizure, injury, coma, or death. I have set my target BG range at 61-110 mg/dl because values in this range are not likely to lead to harm or complications of T1DM. Your target BG range should be determined with your physician because one size does not fit all. Normal BG is 96 ± 12 mg/dl (mean ± standard deviation (SD)) and coefficient of variation is 13% which is the weighted mean from these two studies (here  and here ) of continuous glucose monitoring in healthy subjects. The standard deviation and coefficient of variation are measures of BG variability which I believe are important in T1DM. However, be advised that clinical outcomes in T1DM (i.e. microvascular and macrovascular complications) have only been documented to correlate with measures of mean BG, particularly HbA1c. This does not mean that BG variability is not important, but it just has not been documented to correlate with outcomes and complications of T1DM. Achieving a normal standard deviation or coefficient of variation in T1DM would be difficult, if not impossible, with current exogenous insulin therapy (injected or pumped). I hope that adding a continuous glucose monitor (CGM) to my therapeutic regimen will improve my BG variability and thus the standard deviation and coefficient of variation. I plan to get the FreeStyle Libre CGM as soon as it becomes available in the U.S. Monitoring the standard deviation and/or coefficient of variation and finding ways to improve them to the best of one’s ability is desirable in my opinion. Following a low carbohydrate ketogenic diet is one such method of reducing BG variability, mean BG, insulin doses, and hypoglycemia. A ketogenic diet may also provide an alternate/additional brain fuel in the form of ketones to protect the brain when BG does go low. The alternative energy that ketones supply to the brain may prevent or blunt the sympathoadrenal response to hypoglycemia which in turn reduces or eliminates the symptoms of and harm from hypoglycemia. This hypothesis needs to be tested before it can be stated as fact. Having BG close to normal most of the time (some of which are hypoglycemic) also minimizes the symptoms of mild hypoglycemia and potentially the harm from hypoglycemia as well due to lack of activation of the sympathetic nervous system and adrenal gland responses to hypoglycemia i.e. sympathoadrenal-induced fatal cardiac arrhythmia, see here.

Below are my BG readings along with the Humalog (rapid-acting insulin) doses I used to address hyperglycemia in August 2017. You can see below that most of the hyperglycemia occurred either in the morning (fasting at 8 am – blue circles) or after weightlifting (at 2 pm – black circles or at 6 pm – magenta circles). The morning hyperglycemia was addressed with increasing basal insulin doses. The hyperglycemia after weightlifting could be related to inadequate basal insulin and/or as I have explained in prior blog posts that this may be related to stress hormones which are normally released during intense exercise that serve to increase both BG and fatty acid levels in the blood to provide exercising muscles with additional energy. Because those with T1DM cannot make insulin, BG can rise with intense exercise and will need to be corrected with exogenous insulin. I don’t like the fact that my BG increases so much with weightlifting, so hopefully increasing the basal insulin dose will help reduce it. However, it beats the alternative of hypoglycemia during the workout. I have not used exogenous insulin prior to a workout in anticipation of hyperglycemia for fear of hypoglycemia. Hopefully, any adverse effects from these temporary rises in BG will be mitigated by the benefits of the exercise itself. Those without diabetes also experience a similar increase in BG with intense exercise, see here.

Post 43 Blood Glucose Humalog Doses Graph

The table below shows the BG variability results for current and previous time periods. The percentiles (10th, 25th, 75th, 90th) on the right show the spread of the BG readings about the median. The interquartile range, the difference between the 75th and 25th percentiles, is a measure of BG variability. In the middle of the table are the %Time in three BG ranges: %Time BG < 61 mg/dl (hypo) and the mean BG during that time, then %Time BG 61-110 mg/dl (target) and the mean BG during that time, and %Time BG > 110 mg/dl (hyper) and the mean BG during that time. The other measures of BG variability were defined and explained in blog post #10.

Post 43 Variability Table

The daily insulin dose totals and exercise type and time are shown in the graphs below. You can see that I had to increase my insulin doses progressively during the month from a total in the mid 30’s IU/day to the mid 50’s IU/day. In fact, these insulin dose totals are the highest I have had to use since starting the ketogenic diet in Feb. 2012. It will be interesting to see if this persists or goes back down to previous dose totals.

Post 43 Exercise Insulin Dose Totals Graph

In September, I will continue olympic weightlifting every day to the extent that I can with the current two exercises per day.

My Thoughts About Management of Type 1 Diabetes With A Ketogenic Diet

My goal of glycemic management in T1DM with a ketogenic diet is to keep BG as close to normal i.e. 96 ± 12 mg/dl (mean ± SD) as is safely possible (i.e. avoiding hypoglycemia) to avoid diabetic complications, a reduction in lifespan, and unpleasant symptoms of as well as injury and death from hypoglycemia. For me, a well-formulated whole-food nutrient-dense ketogenic diet, daily exercise, frequent BG measurements, and lower insulin-analog doses (Humalog/Lantus) have improved my glycemic control, hypoglycemic reactions, and quality of life. My current version of ketogenic diet has changed slightly since I last wrote about it in detail in blog post #9.

My current diet looks like this.

What I Cook & Eat

  • Beef, grass-fed, including meat (85% lean), heart, liver, and kidney (liverwurst)
  • Fish, mainly wild Alaskan salmon
  • Canadian bacon (uncured pork loin)
  • Lamb occasionally
  • Chicken & Turkey occasionally
  • Chicken Eggs
  • Non-starchy vegetables (about 5% carbohydrate content by weight) including Cabbage (Red, Green, Napa), Kale, Collard Greens, Spinach, Bell Peppers, Leeks, Onions, Brussels sprouts, Home-made Sauerkraut from Red Cabbage, Bok-Choy, Broccoli, Cauliflower, Yellow Squash, Zucchini, Cucumber, Lettuce (Iceberg & Romaine), and some others.
  • Fruit – Avocado, Tomatoes, Olives, Strawberries, Blueberries, Blackberries, lemon juice on fish and salads
  • Root Vegetable: Raw Carrots
  • Nuts & Seeds – Pepitas, Macadamia, Brazil, Pecan, Walnut, Pistachio, Cashew.
  • MCT oil – a few tablespoons on salads
  • Note: I developed an intolerance to milk prior to my diagnosis of T1D. I did try heavy whipping cream after starting my KLCHF diet, but am also intolerant of it. I do tolerate butter, but wanted to decrease my fat intake, so eliminated all dairy including cheese and yogurt.

What I Drink

Water (filtered by reverse osmosis), Unsweetened Tea & Coffee

What I Don’t Eat

  • Grains – Wheat, Corn, Rice, Oats (there are many more) or anything made from them, which is too numerous to list here. Gluten is a protein present in a number of grains (all varieties of wheat including spelt, kamut, and triticale as well as barley and rye.) which can cause a number of medical problems for a significant portion of the population with gluten sensitivity or celiac disease. In my case, I avoid them due to their carbohydrate content.
  • Starchy and most root vegetables – potatoes, sweet potatoes, yams
  • Legumes – peas, beans, lentils, peanuts, soybeans
  • High sugar fruits – includes most fruits except berries, see above.
  • Sugar and the fifty other names used to disguise sugar.
  • Vegetable Oils – Canola, Corn, Soybean, Peanut, Sunflower, Safflower, Cottonseed, Grape seed, Margarine & Butter substitutes, Shortening.
  • All Processed Food-like Substances i.e., most of what is in the grocery store.
  • I avoid restaurants except when traveling, and then order fish or steak with plain steamed non-starchy vegetables (no gravy or sauces that typically contain sugar, cornstarch, or flour) or salad.
  • Refined, but healthy, fats – I have eliminated refined fats except MCT oil from my diet including butter, coconut & olive oils to improve body composition and remain in the 77kg olympic weightlifting weight class.

What I Don’t Drink

  • Colas (both sweetened, artificially sweetened, and unsweetened).
  • Fruit Juice except small amounts of lemon juice.
  • Alcohol (can cause hyperglycemia or hypoglycemia in persons with diabetes).
  • No artificial sweeteners, don’t need or like them.

A large part of my fat intake comes from nuts & seeds which hypothetically could result in potential adverse consequences from omega-6 polyunsaturated fats in the opinion of some low carb advocates. However, I have yet to see any studies that show harm from eating nuts & seeds. As a reference, the average fat breakdown of the seven nuts & seeds that I eat daily is 33% polyunsaturated, 52% monounsaturated, and 15% saturated fat. However, when my entire diet is analyzed, 26% of my fat intake is from polyunsaturates, 56% is from monounsaturates, and 18% is from saturated fats. When my diet is broken down by macronutrients, I consume 170 grams of fat (or 68% of my total daily calories), 70 grams of carbohydrate, 30 grams of which is dietary fiber (or 12% of my total daily calories), and 110 grams of protein (or 20% of my total daily calories). In calories, it totals to 2,250 kcal/day.

My exercise regimen and its resulting varying insulin sensitivity and hormonal changes actually makes glycemic management more difficult i.e. challenging, but I enjoy exercise and feel it has other health and lifespan-extending benefits. Hopefully, my BG values and variability as well as my lower insulin doses that result from my ketogenic diet and exercise are close enough to optimal to avoid any reduction in lifespan, diabetic complications, and harm from hypoglycemia. Only time will tell.

#42 July 2017 Update on My T1D Management

I continued my trial of metformin in July 2017. Unfortunately, I had two common side-effects: diarrhea and fatigue despite reducing the dose to 500 mg/day. Although I have not ruled out giving it another try at some point in the future, I decided to stop because I did not like feeling fatigued.

After stopping the metformin I decided to experiment with carb-loading prior to weightlifting with sweet potato beginning on July 15th. I tried 250-320 grams of sweet potato in a meal (either the breakfast just prior to weightlifting or at dinner the evening before). Sweet potatoes are about 20% carbohydrate by weight with about 16% of the carbohydrate being dietary fiber. Thus a 300 gram sweet potato has about 60 grams of total carbohydrate. I have wanted to do this experiment for a while as I started olympic weightlifting Feb. 2015 after having been on the ketogenic for three years. Because olympic weightlifting is an intense exercise it is possible that performance may be improved with additional muscle glycogen reserves that could possibly be low on a ketogenic diet. Of course without doing muscle biopsies, there is no way to know what my glycogen reserves are on a ketogenic diet, how much glycogen is used during olympic weightlifting, and whether or not my performance is adversely affected. Thus the reason for the experiment. So far it appears that the 60 grams of carbohydrate from sweet potato is helping my performance unless the placebo effect might account for the improved performance. Another confounding factor is that my left shoulder pain resolved during the last 6 workouts after starting sweet potato. However, during 9 workouts prior to taking metformin, my average max snatch was 145 lb. compared to 143 lb. during the last 9 workouts on metformin. I stopped metformin and started sweet potato. My average max snatch while taking sweet potato over 9 workouts was 152 lb. Similarly, my max clean and jerk prior to metformin was 178 lb., while on metformin was 183 lb., and with sweet potato was 191 lb. I have to take an additional 1 – 1.5 IU of Humalog with the meal to which I add sweet potato. I really can’t evaluate whether the sweet potato alone has adversely affected my overall glycemic control, but I will be looking at that as well.

Glycemic Management Results for July 2017

July 2017 glycemic results were noteworthy for both more hypoglycemia and hyperglycemia with decreasing insulin doses during the month. Fortunately none of the low blood glucose (BG) values were associated with symptoms this month. Hypoglycemia in a person with T1DM who is conscientiously trying to control BG is a real danger that should be minimized. Although not always avoidable, hypoglycemia can be reduced by considering the many factors that affect BG response to exogenous insulin including dietary carbohydrate and protein, exercise, sleep (lack of sleep increases insulin resistance) and by slightly underestimating the insulin dose (e.g. by 0.5 IU) to be administered (in my opinion). Additional insulin correction doses can always be given later to correct hyperglycemia.

Below are my mean BG values, mean insulin doses, and BG frequency distribution for July 2017 compared to previous time periods. I have changed two columns to indicate the AUC mean BG and predicted HbA1c. AUC mean BG is the mean BG by calculating the area under the curve (AUC) of BG versus time. The predicted HbA1c uses the formula: AUC mean BG plus 88.55 divided 33.298. This formula is the least squares fit using my own personal mean BG versus measured HbA1c over many years. My particular HbA1c values are higher than many other individuals with the same mean BG. This is referred to as being a “high glycator.”

Post 42 Means Table

As presented in blog post #15 exogenous insulin cannot mimic normal insulin secretion, so persons with T1DM should not expect to have truly normal BG values. They just need to be low enough to prevent long-term complications and not so low as to cause unpleasant hypoglycemic symptoms or less common but dangerous consequence including brain damage, seizure, injury, coma, or death. I have set my target BG range at 61-110 mg/dl because values in this range are not likely to lead to harm or complications of T1DM. Your target BG range should be determined with your physician because one size does not fit all. Normal BG is 96 ± 12 mg/dl (mean ± standard deviation (SD)) and coefficient of variation is 13% which is the weighted mean from these two studies (here  and here) of continuous glucose monitoring in healthy subjects. The standard deviation and coefficient of variation are measures of BG variability which I believe are important in T1DM. However, be advised that clinical outcomes in type 1 diabetes (i.e. microvascular and macrovascular complications) have only been documented to correlate with measures of mean BG, particularly HbA1c. This does not mean BG variability is not important, but it just has not been documented to correlate with outcomes and complications of T1DM. Achieving a normal standard deviation or coefficient of variation in T1DM would be difficult, if not impossible, with current exogenous insulin therapy (injected or pumped). I hope that adding a continuous glucose monitor (CGM) to my therapeutic regimen will improve my BG variability and thus the standard deviation and coefficient of variation. I plan to get the FreeStyle Libre CGM as soon as it becomes available in the U.S. Monitoring the standard deviation and/or coefficient of variation and finding ways to improve them to the best of one’s ability is desirable in my opinion. Following a low carbohydrate ketogenic diet is one such method of reducing BG variability, mean BG, insulin doses, and hypoglycemia. A ketogenic diet may also provide an alternate/additional brain fuel in the form of ketones to protect the brain when BG does go low. The alternative energy that ketones supply to the brain may prevent or blunt the sympathoadrenal response to hypoglycemia which in turn reduces or eliminates the symptoms of and harm from hypoglycemia. This hypothesis needs to be tested before it can be stated as fact. Having BG close to normal most of the time (some of which are hypoglycemic) also minimizes the symptoms of mild hypoglycemia and potentially the harm from hypoglycemia as well due to lack of activation of the sympathetic nervous system and adrenal gland responses to hypoglycemia i.e. sympathoadrenal-induced fatal cardiac arrhythmia, see here.

Below are my BG readings along with exercise type and time for July 2017. You can see below that most of the hyperglycemia occurred after weightlifting (at 2 pm – black circles or at 6 pm – magenta circles). I have explained in prior blog posts that this may be related to stress hormones which are normally released during intense exercise that serve to increase both BG and fatty acid levels in the blood to provide exercising muscles with additional energy. Because those with type 1 diabetes (T1DM) cannot make insulin, BG can rise with intense exercise and will need to be corrected with exogenous insulin. I don’t like the fact that my BG increases so much with weightlifting. However, it beats the alternative of hypoglycemia and loss of performance during the workout. I have not used exogenous insulin prior to a workout in anticipation of hyperglycemia for fear of hypoglycemia. Hopefully, any adverse effects from these temporary rises in BG will be mitigated by the benefits of the exercise itself. Those without diabetes also experience a similar increase in BG with intense exercise, see here.

Post 42 BG Exercise Graphs

The table below shows the BG variability results for current and previous time periods. The percentiles (10th, 25th, 75th, 90th) on the right show the spread of the BG readings about the median. The interquartile range, the difference between the 75th and 25th percentiles, is a measure of BG variability. In the middle of the table are the %Time in three BG ranges: %Time BG < 61 mg/dl (hypo) and the mean BG during that time, then %Time BG 61-110 mg/dl (target) and the mean BG during that time, and %Time BG > 110 mg/dl (hyper) and the mean BG during that time. The other measures of BG variability were defined and explained in blog post #10.

Post 42 Variability Table

The actual daily insulin doses and daily insulin dose totals are shown in the graphs below. You can see that I had to decrease my insulin doses progressively during the month from a total in the upper 40’s IU/day to low 30’s IU/day. I have yet to understand why my doses vary so much over time other than the simple fact that exogenous insulin therapy does not mimic endogenous insulin secretion. Nor have I found a way to make the insulin doses more stable while still enjoying the exercise that I know contributes to glycemic variability. I had to take multiple extra rapid-acting insulin doses to correct hyperglycemia during the second half of the month and I had to decrease both basal and mealtime bolus insulin doses during the month.

Post 42 Insulin Totals Doses Graphs

I measured blood ketones twice after adding eating the sweet potato in July at 0.2 and 0.4 mM and once prior to eating sweet potato at 0.7 mM. Thus from this limited data, it appears that the 60 grams of extra carbohydrate knocks me out of ketosis and that I’m back in ketosis ([BHB] > 0.5mM) less than 48 hours after eating the sweet potato. Note: I do olympic weightlifting every other day and took the sweet potato either just prior to or the evening before weightlifting. In August, I will resume using the Ketonix acetone monitor to get a better idea of how the extra carbohydrate affects my time in ketosis.

In August, I will continue olympic weightlifting every other day. I am continuing to take a break from regular aerobic exercise and instead I am stretching and foam-rolling every other day as well as doing rotator cuff exercises to further strengthen my left shoulder which I injured in March 2017. Fortunately I am no longer having left shoulder pain, so I think the rotator cuff rehab exercises were helpful. The foam-rolling has been effective in resolving trigger points (along with two rounds of trigger point dry needling) in my IT bands which has resolved the IT band syndrome in my right knee.

My Thoughts About Management of Type 1 Diabetes With A Ketogenic Diet

My goal of glycemic management in T1DM with a ketogenic diet is to keep BG as close to normal i.e. 96 ± 12 mg/dl (mean ± SD) as is safely possible (i.e. avoiding hypoglycemia) to avoid diabetic complications, a reduction in lifespan, and unpleasant symptoms of as well as injury and death from hypoglycemia. For me, a well-formulated whole-food nutrient-dense ketogenic diet (see blog post #9 for more details), daily exercise, frequent BG measurements, and lower insulin-analog doses (Humalog/Lantus) have improved my glycemic control, hypoglycemic reactions, and quality of life. My current version of ketogenic diet has changed slightly since I last wrote about it in detail in blog post #9.

My current diet looks like this.

What I Cook & Eat

•Beef, grass-fed, including meat (85% lean), heart, liver, and kidney (liverwurst)

•Fish, mainly wild Alaskan salmon

•Canadian bacon (uncured pork loin)

•Lamb occasionally

•Chicken & Turkey occasionally

•Chicken Eggs

•Non-starchy vegetables (about 5% carbohydrate content by weight) including Cabbage (Red, Green, Napa), Kale, Collard Greens, Spinach, Bell Peppers, Raw Carrots, Leeks, Onions, Brussels sprouts, Home-made Sauerkraut from Red Cabbage, Bok-Choy, Broccoli, Cauliflower, Yellow Squash, Zucchini, Cucumber, Lettuce (Iceberg & Romaine), and some others.

•Fruit – Avocado, Tomatoes, Olives, Strawberries, Blueberries, Blackberries, lemon juice on fish and salads

•Root Vegetable: Sweet Potato and raw carrots.

•Nuts & Seeds – Pepitas, Macadamia, Brazil, Pecan, Walnut, Pistachio, Cashew.

•Note: I developed an intolerance to milk prior to my diagnosis of T1D. I did try heavy whipping cream after starting my KLCHF diet, but am also intolerant of it. I do tolerate butter, but wanted to decrease my fat intake, so eliminated all dairy including cheese and yogurt.

What I Drink

Water (filtered by reverse osmosis), Unsweetened Tea & Coffee

What I Don’t Eat

•Grains – Wheat, Corn, Rice, Oats (there are many more) or anything made from them, which is too numerous to list here. Gluten is a protein present in a number of grains (all varieties of wheat including spelt, kamut, and triticale as well as barley and rye.) which can cause a number of medical problems for a significant portion of the population with gluten sensitivity or celiac disease. In my case, I avoid them due to their carbohydrate content.

•Starchy vegetables – white potatoes

•Legumes – peas, beans, lentils, peanuts, soybeans

•High sugar fruits – includes most fruits except berries, see above.

•Sugar and the fifty other names used to disguise sugar.

•Vegetable Oils (really seed oils) – Canola, Corn, Soybean, Peanut, Sunflower, Safflower, Cottonseed, Grape seed, Margarine & Butter substitutes, Shortening.

•All Processed Food-like Substances i.e., most of what is in the grocery store.

•I avoid restaurants except when traveling, and then order fish or steak with plain steamed non-starchy vegetables (no gravy or sauces that typically contain sugar, cornstarch, or flour) or salad.

•Refined, but healthy, Fats – I have eliminated refined fats from my diet including butter, coconut & olive oils.

What I Don’t Drink

•Colas (both sweetened, artificially sweetened, and unsweetened).

•Fruit Juice except small amounts of lemon juice.

•Alcohol (can cause hyperglycemia or hypoglycemia in persons with diabetes).

•No artificial sweeteners, don’t need or like them.

A large part of my fat intake comes from nuts & seeds which hypothetically could result in potential adverse consequences from omega-6 polyunsaturated fats in the opinion of some low carb advocates. However, I have yet to see any studies that show harm from eating nuts & seeds. As a reference, the average fat breakdown of the seven nuts & seeds that I eat daily is 33% polyunsaturated, 52% monounsaturated, and 15% saturated fat. However, when my entire diet is analyzed, 26% of my fat intake is from polyunsaturates, 56% is from monounsaturates, and 18% is from saturated fats. When my diet is broken down by macronutrients, I consume 170 grams of fat (or 68% of my total daily calories), 70 grams of carbohydrate, 30 grams of which is dietary fiber (or 12% of my total daily calories), and 110 grams of protein (or 20% of my total daily calories). In calories, it totals to 2,250 kcal/day.

My exercise regimen and its resulting varying insulin sensitivity and hormonal changes actually makes glycemic management more difficult i.e. challenging, but I enjoy exercise and feel it has other health and lifespan-extending benefits. Hopefully, my BG values and variability as well as my lower insulin doses that result from my ketogenic diet and exercise are close enough to optimal to avoid any reduction in lifespan, diabetic complications, and harm from hypoglycemia. Only time will tell.

Till next time ….

#41 June 2017 Update on My T1D Management

May 2017 was my first personal experience with taking the medication metformin. I developed two common side effects: diarrhea and fatigue. I did not follow my own advice of slowly increasing the dose over time which is likely responsible for these side effects. After quickly increasing the dose to 1000 mg twice daily and developing these side effects, I stopped it for a few days and restarted at 500 mg once daily at dinnertime. So far, so good. I will increase more slowly from this point forward. I think it is too early to understand whether or not it has a beneficial effect, so I did not attempt to make that assessment.

Glycemic Management Results for June 2017 

June 2017 glycemic results were noteworthy for more hyperglycemia requiring increasing insulin doses during the month. Fortunately, I had quite a bit less hypoglycemia with no symptomatic hypoglycemia. Hypoglycemia in a person with T1DM who is conscientiously trying to control blood glucose (BG) is a real danger that should be minimized by slightly underestimating the insulin dose (e.g. by 0.5 IU) to be administered (in my opinion). Additional insulin correction doses can always be given later to correct hyperglycemia.

Below are my mean blood glucose (BG) values, mean insulin doses, and BG frequency distribution for June 2017 compared to previous time periods. I have changed two columns to indicate the AUC mean BG and predicted HbA1c. AUC mean BG is the mean BG by calculating the area under the curve (AUC) of BG versus time. The predicted HbA1c uses the formula: AUC mean BG plus 88.55 divided by 33.298. This formula is the least squares fit using my own personal mean BG versus measured HbA1c over many years. My particular HbA1c values are higher than most other individuals with the same mean BG. This is referred to as being a “high glycator.”

Post 41 Means Table

As presented in blog post #15 exogenous insulin cannot mimic normal insulin secretion, so persons with T1DM should not expect to have truly normal BG values. They just need to be low enough to prevent long-term complications and not so low as to cause unpleasant hypoglycemic symptoms, brain damage, seizure, injury, coma, or death. I have set my target BG range at 61-110 mg/dl because values in this range are not likely to lead to harm or complications of T1DM. Your target BG range should be determined with your physician because one size does not fit all. Normal BG is 96 ± 12 mg/dl (mean ± standard deviation (SD)) and coefficient of variation is 13% which is the weighted mean from these two studies (here and here) of continuous glucose monitoring in healthy subjects. The standard deviation and coefficient of variation are measures of BG variability which I believe are important in T1DM. However, be advised that clinical outcomes in type 1 diabetes (i.e. microvascular and macrovascular complications) have only been documented to correlate with measures of mean BG, particularly HbA1c. This does not mean BG variability is not important, but it just has not been documented to correlate with outcomes and complications of T1DM. Achieving a normal standard deviation or coefficient of variation in T1DM would be difficult, if not impossible, with current exogenous insulin therapy (injected or pumped). I hope that adding a continuous glucose monitor (CGM) to my therapeutic regimen will improve my BG variability and thus the standard deviation and coefficient of variation. I plan to get the FreeStyle Libre CGM as soon as it becomes available in the U.S. Monitoring the standard deviation and/or coefficient of variation and finding ways to improve them to the best of one’s ability is desirable in my opinion. Following a low carbohydrate ketogenic diet is one such method of reducing BG variability, mean BG, insulin doses, and hypoglycemia. A ketogenic diet may also provide an alternate/additional brain fuel in the form of ketones to protect the brain when BG does go low. The alternative energy that ketones supply to the brain may prevent or blunt the sympathoadrenal response to hypoglycemia which in turn reduces or eliminates the symptoms of and harm from hypoglycemia. This hypothesis needs to be tested before it can be stated as fact. Having BG close to normal most of the time (some of which are hypoglycemic) also minimizes the symptoms of mild hypoglycemia and potentially the harm from hypoglycemia as well due to lack of activation of the sympathetic nervous system and adrenal gland responses to hypoglycemia i.e. sympathoadrenal-induced fatal cardiac arrhythmia, see here.

Below are my BG readings along with exercise type and time for June 2017. You can see below that most of the hyperglycemia occurred after weightlifting (at 2 pm – black circles or at 6 pm – magenta circles). I have explained in prior blog posts that this may be related to stress hormones which are normally released during intense exercise that serve to increase both BG and fatty acid levels in the blood to provide exercising muscles with additional energy. Because those with type 1 diabetes (T1DM) cannot make insulin, BG can rise with intense exercise and will need to be corrected with exogenous insulin. I don’t like the fact that my BG increases so much with weightlifting. However, it beats the alternative of hypoglycemia and loss of performance during the workout. I have not used exogenous insulin prior to a workout in anticipation of hyperglycemia for fear of hypoglycemia. Hopefully, any adverse effects from these temporary rises in BG will be mitigated by the benefits of the exercise itself.

Post 41 Exercise &amp; BG Graphs

The table below shows the BG variability results for current and previous time periods. The percentiles (10th, 25th, 75th, 90th) on the right show the spread of the BG readings about the median. The interquartile range, the difference between the 75th and 25th percentiles, is a measure of BG variability. In the middle of the table are the %Time in three BG ranges: %Time BG < 61 mg/dl (hypo) and the mean BG during that time, then %Time BG 61-110 mg/dl (target) and the mean BG during that time, and %Time BG > 110 mg/dl (hyper) and the mean BG during that time. The other measures of BG variability were defined and explained in blog post #10.

Post 41 Variability Table

The actual daily insulin doses and daily insulin dose totals are shown in the graphs below. You can see that I had to increase my insulin doses progressively during the month from 27 IU/day to 45 IU/day. I have yet to understand why my doses vary so much over time other than the simple fact that exogenous insulin therapy does not mimic endogenous insulin secretion. Nor have I found a way to make the insulin doses more stable while still enjoying the exercise that I know contributes to glycemic variability. I had to take multiple extra rapid-acting insulin doses to correct hyperglycemia and I had to increase both basal and mealtime bolus insulin doses during the month.

Post 41 Insulin Dose Graphs

I did not measure blood or breath ketones in June.

In July, I will continue olympic weightlifting every other day. I am taking a break from regular aerobic exercise and instead I am stretching and foam-rolling every other day as well as doing rotator cuff exercises to rehab my left shoulder which I injured in March 2017. The foam-rolling has been effective in resolving trigger points (along with two rounds of trigger point dry needling) in my IT bands which has resolved the IT band syndrome in my right knee.

My Thoughts About Management of Type 1 Diabetes With A Ketogenic Diet

My goal of glycemic management in T1DM with a ketogenic diet is to keep BG as close to normal i.e. 96 ± 12 mg/dl (mean ± SD) as is safely possible (i.e. avoiding hypoglycemia) to avoid diabetic complications, a reduction in lifespan, and unpleasant symptoms of as well as injury and death from hypoglycemia. For me, a well-formulated whole-food nutrient-dense ketogenic diet (see blog post #9 for more details), daily exercise, frequent BG measurements, and lower insulin-analog doses (Humalog/Lantus) have improved my glycemic control, hypoglycemic reactions, and quality of life. My current version of ketogenic diet has changed slightly since I last wrote about it in detail in blog post #9.

My current diet looks like this.

What I Cook & Eat

•Beef, grass-fed, including meat (85% lean), heart, liver, and kidney (liverwurst)

•Fish, mainly wild Alaskan salmon

•Canadian bacon (uncured pork loin)

•Lamb occasionally

•Chicken & Turkey occasionally

•Chicken Eggs

•Non-starchy vegetables (about 5% carbohydrate content by weight) including Cabbage (Red, Green, Napa), Kale, Collard Greens, Spinach, Bell Peppers, Raw Carrots, Leeks, Onions, Brussels sprouts, Home-made Sauerkraut from Red Cabbage, Bok-Choy, Broccoli, Cauliflower, Yellow Squash, Zucchini, Cucumber, Lettuce (Iceberg & Romaine), and some others.

•Fruit – Avocado, Tomatoes, Olives, Strawberries, Blueberries, Blackberries, lemon juice on fish and salads

•Nuts & Seeds – Pepitas, Macadamia, Brazil, Pecan, Walnut, Pistachio, Cashew.

•Note: I developed an intolerance to milk prior to my diagnosis of T1D. I did try heavy whipping cream after starting my KLCHF diet, but am also intolerant of it. I do tolerate butter, but wanted to decrease my fat intake, so eliminated all dairy including cheese and yogurt.

What I Drink

Water (filtered by reverse osmosis), Unsweetened Tea & Coffee

What I Don’t Eat

•Grains – Wheat, Corn, Rice, Oats (there are many more) or anything made from them, which is too numerous to list here. Gluten is a protein present in a number of grains (all varieties of wheat including spelt, kamut, and triticale as well as barley and rye.) which can cause a number of medical problems for a significant portion of the population with gluten sensitivity or celiac disease. In my case, I avoid them due to their carbohydrate content.

•Starchy vegetables – potatoes, sweet potatoes, yams, most root vegetables (turnip root okay), peas

•Legumes – peas, beans, lentils, peanuts, soybeans

•High sugar fruits – includes most fruits except berries, see above.

•Sugar and the fifty other names used to disguise sugar.

•Vegetable Oils (really seed oils) – Canola, Corn, Soybean, Peanut, Sunflower, Safflower, Cottonseed, Grape seed, Margarine & Butter substitutes, Shortening.

•All Processed Food-like Substances i.e., most of what is in the grocery store.

•I avoid restaurants except when traveling, and then order fish or steak with plain steamed non-starchy vegetables (no gravy or sauces that typically contain sugar, cornstarch, or flour) or salad.

•Refined, but healthy, Fats – I have eliminated refined fats from my diet including butter, coconut & olive oils.

What I Don’t Drink

•Colas (both sweetened, artificially sweetened, and unsweetened).

•Fruit Juice except small amounts of lemon juice.

•Alcohol (can cause hyperglycemia or hypoglycemia in persons with diabetes).

•No artificial sweeteners, don’t need or like them.

A large part of my fat intake comes from nuts & seeds which hypothetically could result in potential adverse consequences from omega-6 polyunsaturated fats in the opinion of some low carb advocates. However, I have yet to see any studies that show harm from eating nuts & seeds. As a reference, the average fat breakdown of the seven nuts & seeds that I eat daily is 33% polyunsaturated, 52% monounsaturated, and 15% saturated fat. However, when my entire diet is analyzed, 26% of my fat intake is from polyunsaturates, 56% is from monounsaturates, and 18% is from saturated fats. When my diet is broken down by macronutrients, I consume 170 grams of fat (or 68% of my total daily calories), 70 grams of carbohydrate, 30 grams of which is dietary fiber (or 12% of my total daily calories), and 110 grams of protein (or 20% of my total daily calories). In calories, it totals to 2,250 kcal/day.

My exercise regimen and its resulting varying insulin sensitivity and hormonal changes actually makes glycemic management more difficult i.e. challenging, but I enjoy exercise and feel it has other health and lifespan-extending benefits. Hopefully, my BG values and variability as well as my lower insulin doses that result from my ketogenic diet and exercise are close enough to optimal to avoid any reduction in lifespan, diabetic complications, and harm from hypoglycemia. Only time will tell.

Till next time ….